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General introduction 
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Modern imaging technologies play a crucial role in daily clinical care. In cancer treatment 
for example, imaging techniques are vital tools for state of the art management in all stages 
of the cancer care cycle. In cancer screening; imaging aims for early detection of small (pre)
cancerous lesions, preferably before differentiation into invasive or metastatic disease. In 
cancer staging; several imaging modalities are used to characterize the primary lesion, 
describe the local extent and determine possible metastatic sites. Detailed knowledge of 
these issues is essential before an optimal therapeutic plan can be decided on. In cancer 
treatment; complete surgical resection of a tumor is necessary for best chances of long-
term survival. New methods for intra-operative imaging are currently tested for optimal 
intra-operative tumor visualisation aiming for complete tumor resection. Furthermore, 
accurate tumor localisation is vital for optimal treatment with ablation techniques or 
radiotherapy. Finally, imaging is essential for therapy response monitoring and subsequent 
management of systemic treatment and thorough follow-up examinations 1.

Imaging techniques, such as x-ray, ultrasound, computed tomography (CT) and 
magnetic resonance imaging (MRI) are considered as the gold standard for anatomical 
imaging.  Functional imaging techniques, such as single-photon emission computed 
tomography (SPECT) and photon emission tomography (PET) are also becoming standard 
of care in most medical facilities. In the last decade, progressive developments have 
occurred in the field of diagnostic imaging inducing higher resolution imaging, faster 
imaging protocols and less ionizing radiation. Besides the introduction of these technical 
developments in diagnostic imaging a clear trend is noticed towards image guided 
treatments. At this stage, this is mainly limited to radiological intervention procedures 
such as local tumor ablations. However, new developments in image guided surgical 
procedures are aiming for better resection planes and negative tumor resection margins. 
Conventional imaging modalities have limitations restricting their intra-operative 
employment for these purposes. With these techniques, the threshold of detection of 
target tissue is dependent on the minimum spatial resolution of the available imaging 
technique. Despite recent technological advances, such as the use of novel radiotracers 
for improved spatial resolution and the combination of different imaging modalities into 
single examinations (e.g. PET-CT), the minimum spatial resolution of various imaging 
techniques still has a current range in the order of millimetres which may not be accurate 
enough for surgical guidance 1-5. In addition, the application of conventional imaging 
modalities is limited in the operating room due to the size of the imaging equipment that 
is needed. 

Biomedical optics could prove a solution for improving these resolution limitations of 
conventional imaging techniques as well as to adhere to the space requirements within the 
operating room and the restricted surgical working field.  Biomedical optical techniques 
have more accurate tissue sensing properties than conventional imaging techniques with 
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spatial resolution capabilities in µm. Another advantage is that they can be incorporated 
into existing medical tools leading to smart devices for interventional procedures. 

Two main fields in biomedical optics can be distinguished; Tomography and 
Spectroscopy.

Tomography

Tomography is a non-invasive technology that can generate high-resolution images of 
tissue structures. Several techniques can be distinguished in this field.

Optical coherence tomography (OCT) can generate images of tissue surfaces in real-
time using a near-infrared light source. OCT imaging is similar to ultrasound imaging except it 
uses light instead of sound waves. The physical principle of OCT is based on analysis of tissue 
by measuring the time delay and intensity of backscattered or reflected light. Differences in 
the reflected light occur due to variations in the index of refraction of the optical scattering. 
The achieved image resolutions range from 1 to 15 µm 6. OCT can provide direct optical 
feedback of targeted tissue. Clinical application of OCT systems currently focuses on the 
fields of ophthalmology and dermatology. In cardiology and internal medicine, incorporation 
of OCT systems into vascular catheters and endoscopes also enable identification and 
characterisation of atherosclerotic plaques and intestinal mucosal changes 7,8.  

Photoacoustic tomography (PAT) uses short pulses of laser light to generate ultrasonic 
waves creating images of tissue several mm below the surface. Laser pulses, mainly in the 
far-red or NIR wavelength range, are directed at target tissue. Absorption of the photons 
produces heat and a subsequent thermal expansion of the absorbing tissue components. 
This process generates acoustic waves that can be detected by ultrasound detectors. The 
advantage of this technique compared to optical imaging is that it can present an enhanced 
resolution of tissue in depths more than 1mm due to weaker scattering of the ultrasound 
waves. Target tissue absorbers for this technique include blood and water. Current PAT 
research focuses on use in medical oncology, such as breast and skin cancer 9-11.  

Diffuse optical tomography (DOT) creates images of tissue based on differences of 
absorption and scattering properties after interaction with spectra mainly in the near-
infrared light range. DOT can quantify relevant tissue components, such as water, lipid and 
hemoglobin, based on the known absorption properties of these molecules to the selected 
light. Depending on the concentrations of these molecules throughout the analysed tissue 
the reflected light spectrum will differ. Reflection of light depends on the refraction index 
between extra- and intracellular fluids and cellular components such as nucleoli and 
mitochondria. The fluctuating degree of density in tissue will generate varying scattering 
coefficients. Taking these qualities into mind, the main advantage of DOT reflects on its 
ability to display physiological changes in tissue.  Primary focus of the application of DOT in 
commercial medicine is focussed on the imaging potential of brain and breast tissue 12-14.
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Spectroscopy 

Spectroscopy is the study of the interaction between radiated energy and matter. 
Optical spectroscopy includes several techniques such as Diffuse Reflectance, Fluorescence 
and Raman spectroscopy. Using optical spectroscopy techniques, tissue differentiation is 
possible by analyzing the changes in light spectra after interaction with tissue composition 
and cellular components. These changes in selected light spectra occur due to processes 
like absorption, scattering of light or induction of fluorescence. The changed spectral 
patterns represent specific quantitative biochemical and morphological information from 
the examined tissues depending on tissue morphology, cellular structure, metabolic rate, 
vascularity and oxygenation. Depending on the chosen optical spectroscopy technique, 
specific differentiation between tissues becomes possible based on the differences on a 
cellular or even a molecular level 15-22. 

Diffuse reflectance spectroscopy (DRS) measures the loss in intensity of diffusely 
reflected light after it has undergone interactions with tissue for each wavelength of light 
produced by a broadband light source 22. For example, if photons of the same wavelength 
are emitted in a target tissue sample, not all photons will be recollected due to the 
absorption and scattering processes  (Figure 1A). 

The main absorbing molecules or chromophores of the visible light spectrum (400 – 
750 nm) in human tissue are oxygenated and deoxygenated haemoglobin and ß-carotene. 

Figure 1. Schematic overview of two optical spectroscopy techniques. 
A. Diffuse Reflectance Spectroscopy (DRS); a broadband light spectrum is emitted into tissue and the 
spectrum of the reflected light is dependent on absorption and scattering interactions within the target 
tissue. B. Fluorescence Spectroscopy (FS); light of a single wavelength is emitted into tissue. Absorption 
can result in emission of fluorescent light by the tissue fluorophores.

1A 1B
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In the near-infrared light spectrum these are water, adipose tissue and collagen (Figure 2).  
The absorption coefficient from each chromophore is directly related to its concentration 
in the tissue specimen. Thus, the higher the concentration of a molecule in a target tissue, 
the more photons that are absorbed at a specific wavelength and the lower the number 
of photons that will be recollected in the reflected light spectrum after tissue interaction. 
This biological and physiological information can be directly quantified from the reflected 
light spectrum 23. 

Besides tissue composition, DRS can detect differences in tissue morphology by 
the analysis of the elastic light scattering. Elastic scattering means that the direction of 
the wavelength of a photon changes, but the wavelength remains the same before and 
after the scattering occurrence. The scattering coefficient of a target tissue is unique 
depending on the underlying cellular structure, the size, the density and the refractive 
index of each cellular and subcellular component.  Tissue structure alterations due to 
processes like cell death and proliferation of cells can be detected by differences in light 
scattering 24. Scattering depends on the size of the scatterer. Two types of elastic scattering 
can be distinguished; ‘Rayleigh’ scattering occurs if the scattering particle is smaller than 
wavelength of the photon. Intracellular components like collagen fibrils are examples 
of Rayleigh scatterers. The ‘Mie’ theory describes the scattering of photons by particles 
similar or larger than their wavelength. Cells and main cellular components can cause Mie 
scattering 25. Analysis of figure 2 shows that little absorption of light between 700 and 
1000nm occurs when interacting with biological tissue. Scattering properties of tissue are 
best analysed between these wavelengths. 

Figure 2. Normalized absorption coefficients of deoxygenated-hemoglobin (Hb), oxygenated-hemoglobin 
(HbO2), β-carotene, water (H2O), lipid and collagen.
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Fluorescence Spectroscopy (FS) measures the fluorescence signals, which are the 
result of inelastic scattering of absorbed photons by specific tissue molecules also called 
fluorophores. Fluorescence is caused by re-emission of light with a higher wavelength than 
the absorbed photon wavelength (Figure 1B). With Fluorescence Spectroscopy biological 
tissues are examined based on the fluorescent characteristics after illumination with light 
of one specific wavelength. 21,22,26 Several known intrinsic fluorophores in human tissue are 
collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide 
(FAD) and porphyrin. Analysis of the fluorescence signal allows tissue discrimination based 
on differences in cellular structure (collagen en elastin) and cellular metabolism (FAD, 
NADH and porphyrin) 27-30. Exogenous fluorophores can also be used for fluorescence 
tissue analysis 22,27,31,32. After wavelength dependent interactions in tissue, the measured 
spectra not only contain biochemical information due to fluorescence, but they are 
enriched by morphological information of the tissue due absorption and scattering of the 
fluorescence light. These two factors can significantly frustrate the specific extraction of 
quantitative biochemical information from the measured fluorescence spectra 22. To be 
able to identify the specific structural and biochemical information from the fluorescence 
signal, a combination of FS and DRS is often used in tissue analysis. The ‘intrinsic’ tissue 
fluorescence can be extracted from the measured fluorescence spectrum by correcting 
for absorption and scattering from the measured diffuse reflectance spectrum.  

The specific optical characteristics of DRS and FS described above render these optical 
techniques interesting tools for discrimination of different tissue types and studying 
physiological changes in tissue. Moreover, the characteristics render them interesting for 
study of transformations that occur in malignancy processes.

Clinical advances with DRS and FS

	 Many groups have explored clinical applications of optical spectroscopy for 
various human tissues and organs 1. Several conclusions may be drawn from literature 
thus far. Until 2010, all research with DRS and FS was mainly performed with visual light   
(400 - 750nm). Some groups expanded the applied wavelengths up to a maximum 
of 1000nm. This means that results of the DRS spectra analyses mainly focus on  
(de-)oxygenated haemoglobin, ß-carotene and tissue saturation as well as scattering 
properties. For the analysis of received data the research groups used several different 
analysis methods. This renders it difficult to compare results between research groups. In 
addition, most studies displayed results of only ex vivo and animal analyses. In all research 
involving DRS, sensitivity and specificity reports varied, ranging from 67 to 100% and from 
60 to 100% respectively. When DRS is combined with FS, sensitivity and specificity figures 
displayed are between 70 to 100% and 63 to 100% respectively. 
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	 From literature, similarities in various tissue parameters in different organs were 

apparent when comparing malignant to benign tissue: (1) Malignancies of the breast, 
lungs, the gastrointestinal tract, the cervix and oral cavity all show increased values of total 
hemoglobin content, (2) Tissue saturation was decreased in breast-, lung-, gastrointestinal- 
and oral cavity cancer, aiding to the hypothesis that hypoxia within a tumor could be 
involved in tumor progression. Other analysed tissue parameters were not uniform in all 
organs. Collagen levels in breast and kidney cancer are relatively raised, but in cervical, 
skin, stomach and oral cavity tumors these are relatively decreased compared to normal 
tissue. Increased scattering has been measured in malignancies of the breast, lung and 
kidney; meanwhile decreased scattering has been displayed in (pre)-malignant cervical 
lesions. 

Optical spectroscopy system development

The results of previous groups towards clinical applications of spectroscopy 
techniques were considered very promising. We believed that further progress could be 
made focussing on improvement of several areas of the spectroscopy technology. First, we 
considered an extension of the spectral analysis range up to 1600nm. This would include 
additional tissue chromophores into the analysis algorithm. Towards new hardware, we 
believe that an extension of the distance between emitting and collecting optical fibers 
will enable refined analysis of chromophore quantification. We also concentrated on 
development of miniaturized optical needles to allow less invasive measurements in vivo. 
Finally, we considered modifying the analysis algorithms an important area to improve 
tissue-sensing accuracy. 

To explore new possibilities for the clinical use of optical spectroscopy, a partnership 
was formed between Philips Research (Minimal Invasive Healthcare), Twente University 
(MIRA Institute) and The Netherlands Cancer Institute (NKI-AvL) in 2009 as a basis for 
this thesis. Development of a spectroscopy console and improvement of data analysis 
software were the first steps before any clinical experiments could be performed (results 
were previously published by Nachabé et al).

An optical console was developed containing a tungsten halogen broadband light 
source producing light from 360 to 2500nm, a spectrometer with a silicon detector to 
resolve light between 400 nm and 1100 nm (Andor Technology, DU420A-BRDD) and a 
spectrometer with a InGaAs detector to resolve light from 800 up to 1700 nm (Andor 
Technology, DU492A-1.7). The initially developed optical probe had a diameter of 1.3mm 
and contained three optical fibers to be connected to the optical setup. One fiber 
connected to the light source and the two other fibers connected to the spectrometers to 
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collect diffusely scattered light from the tissue. A close-up of the optical needle tip shows 
the illumination optical fiber located at a distance of 2.48 mm from the two side-by-side 
optical fibers that are used to collect the diffused light (Figure 3). Such a setup enables 
spectral acquisition in the range between 500 to 1600 nm via an optical fiber with its distal 
end placed against the target tissue sample 33.

An upgraded version of the optical console was later equipped with a semiconductor 
laser (λ=377 nm) for combined DRS and FS measurements. Several different new optical 
needles were developed, some containing 4 optical fibers. The diameter of the available 
optical needles varied from 0.72 mm tot 1.3 mm. 

With this new spectroscopy console, the benefits of an extension of the analysis 
spectrum beyond previously described methods including near-infrared light up to 1600nm 
were explored. Water and lipid are the dominant absorbers of this near infrared spectrum 
and are important molecules in biological tissues. Several groups had estimated the 
concentrations of these chromophores in spectra up to 1000nm. However, quantification 
is not reliable due to effects of scattering and absorption by other chromophores. These 
negative effects decrease in spectra above 1000nm. Indeed, Nachabé et al showed that 
water and lipid could be more accurately quantified from near-infrared light spectra 23,33.

 
The analysis of the acquired light spectra formed another challenge. As previously 

stated, review of the literature displays a variety of different analysis methods utilized 
by various research groups. The methods can roughly be distinguished into two main 
groups. The first technique focuses on the shape of the measured spectra, which are 
statistically analyzed and directly correlated to histological diagnosis. Partially least 
square discrimination analysis is an example, which has the advantage of not requiring 

Figure 3. Schematic display of the optical console. It includes a halogen light source and two spectrometers, 
which are connected to a needle containing three optical fibres to its tip. 
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any data processing and disadvantage that no quantitative information of the target tissue 
is   derived 34. The second approach is a model-based analysis. An algorithm is used to first 
translate spectral data into physical properties such as reduced scattering and absorption 
coefficients for different wavelengths. These are then translated into biologically 
relevant parameters with subsequent quantitative analysis and correlation to histological 
results 35.   Our group mainly focused on a model based approach for our tissue data 
analysis. This was based on the diffusion theory model developed by Farrell et al 36. The 
Levenberg-Marquardt nonlinear inversion algorithm model was used to fit and analyze 
the measured DRS spectra. The absorption coefficients of each tissue chromophore in 
pure state are considered prior knowledge and incorporated into the algorithm together 
with the reduced scattering coefficient 23. The model and calibration procedures were first 
validated on phantom models and subsequently tested on tissue ex vivo and in vivo 23,33. 
A Classification and Regression Tree (CART) algorithm was then used to classify between 
different tissue types from the obtained quantified parameters and compare these results 
to the histological diagnosis 37.

In addition, we compared our method for data analysis to the various other methods 
used by research groups in this field. To this end, the same spectral data we obtained 
from an ex vivo study on human breast tissue was analyzed in 8 different ways 38.  The 
performance between the various methods in terms of sensitivity and specificity was 
diverse. The algorithm we developed was among the best performing analysis methods. 

Intrinsic fluorescence was analyzed and calculated via dual analysis of both the diffuse 
reflectance and fluorescence spectra. By correcting for absorption and scattering the 
intrinsic fluorescence could be derived. This method was previously described by Müller et 
al and Zhang et al and is based on the photon migration theory 39,40. This theory describes 
the circulation of photons in a turbid medium depending on photon-tissue interaction 
events like absorption, scattering or induction of fluorescence. We used a modified version 
of this theory that allows real-time fluorescence recovery, aiming at clinical application. It 
was developed and validated by Müller et al 26. The corrected spectra were then fitted by 
using the intrinsic fluorescence spectra (excitation at 377 nm) of collagen, elastin, NADH 
and FAD which are considered prior knowledge 22. 

In a pre-clinical phase, we designed and validated an optical console and specialized 
software for Diffuse Reflectance Spectroscopy and Fluorescence Spectroscopy analysis of 
biological tissue. Our optical system comprises several advantages of compared to previous 
research. In this thesis we describe the initial results of this innovative approach for tissue 
differentiation in lung, liver and breast cancer and pave the way towards the incorporation 
of this technology into medical devices and introduction into every day medical procedures.
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This dissertation is divided into four sections. Part 1 describes a review of the current 
literature on spectroscopy studies of human tissues at the start of this research project in 
2010 (Chapter 3).

The second part of this thesis highlights the general application of our optical console 
and analysis approach in an ex vivo clinical setting. We focussed on the spectral differences 
between normal and malignant tissue in lung, liver and breast cancer specimens just after 
resection. The main study questions we asked ourselves concentrated on the general 
applicability of the console and the optical needles in a clinical environment; can the 
hardware be easily used in a clinical environment? Did the specially designed software 
function as planned; did we receive real-time feed-back of the tissue spectra? What was 
the performance in biological tissue? Does blood at the tip of the needle have a negative 
influence on the detection of the scattered spectra for example? Finally, what was the 
diagnostic accuracy of our system for discrimination between normal and malignant 
tissue?  

We primarily focussed on Diffuse Reflectance Spectroscopy alone. In  
chapter 4, the results are displayed of the performed measurements in lung tissue. 
Chapter 5 demonstrates the optical sensing capabilities in liver tissue. Chapter 6 
explains the performance of DRS in human breast tissue, which is technically the 
most challenging due to the tissue heterogeneity compared to lung and liver tissue. In  
chapter 7, we demonstrate the benefits of adding Fluorescence spectroscopy to DRS in an 
ex vivo analysis of lung tissue compared to the use of DRS alone.

We then developed new optical needles that could be used for in vivo analyses as an 
important next step towards clinical applications with this technology incorporated. Part 3 
describes the performance of our optical spectroscopy system in an in vivo environment. 
We focused on how is the diagnostic accuracy of our spectroscopy system would be 
compared to the previous ex vivo experiments? Is the system functional in an every day 
clinical situation? 	

In chapter 8 the results are presented of an in vivo analysis in human liver tissue 
performed in the operating theater prior to liver resection. Chapter 9 compares the 
accuracy for detection and response monitoring of malignant tumors after systemic 
chemotherapy in a murine model between histology and our spectroscopy system. Finally, 
we explored the real time quantification and feedback potential of liver steatosis in vivo 
by DRS and FS. This is a clinically relevant question for significant liver surgery like liver 
transplantation or a major resection (Chapter 10).	

The dissertation ends in part 4 with concluding remarks on all presented results and 
future prospectives towards the development of medical tools equipped with optical 
spectroscopy technology (Chapter 11).
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Dit proefschrift is onderverdeeld in vier secties. Deel 1 beschrijft een overzicht van de 
huidige literatuur van spectroscopie studies in humaan weefsel ten tijde van de start van dit 
onderzoeksproject in 2010 (Hoofdstuk 3).

Het tweede gedeelte beschrijft de resultaten van het toepassen van de optische console 
in diverse klinische studies ex vivo. De nadruk in deze studies lag op de spectrale verschillen 
tussen normaal en maligne weefsel in resectiepreparaten van de long, lever en borst. We 
stelden onszelf verschillende onderzoeksvragen: De algemene toepasbaarheid van de console 
en optische naalden in een klinische setting; hoe was de gebruiksgemak van de hardware? 
Functioneerde de speciaal ontwikkelde software zoals gepland; kregen we ‘real-time’ een 
terugkoppeling van de weefselspectra?  Hoe was het functioneren in biologisch weefsel? 
Heeft bijvoorbeeld bloed op de tip van de naald een negatieve invloed op het detecteren van 
de weerkaatsende licht spectra? Tenslotte, wat was het onderscheidend vermogen van ons 
systeem tussen normaal en maligne weefsel?

De eerste studies werden primair met Diffuse Reflectie Spectroscopie verricht. In  
hoofdstuk 4 worden de resultaten uiteengezet van metingen in long weefsel. Hoofdstuk 5 
demonstreert het onderscheidend vermogen tussen normaal lever weefsel en lever metastasen. 
In hoofdstuk 6 worden de discriminerende prestaties getoond in humaan borstweefsel. Dit 
was technisch het meest uitdagend gezien de heterogeniteit van borstweefsel in vergelijking 
met dat van  de long of lever. Vervolgens hebben we Fluorescentie Spectroscopie toegevoegd 
aan DRS en het onderscheidend vermogen van deze gecombineerde technieken ten opzichte 
van DRS alleen vergeleken in een tweede ex vivo analyse van long weefsel (Hoofstuk 7). 

Intussen hadden we nieuwe optische naalden ontwikkeld die gebruikt zouden kunnen 
worden in in vivo weefsel analyses. Dit was een belangrijke volgende fase richting het 
ontwikkelen van optische applicaties voor klinische toepassingen. In deel 3 zetten we de 
prestaties van ons optisch spectroscopie systeem in weefsel in vivo uiteen. De belangrijkste 
vraagstellingen waren: Hoe was het discriminerend vermogen in vivo ten opzichte van eerdere 
ex vivo experimenten? Verder concentreerden we ons op het functioneren van het systeem in 
alledaagse klinische situaties. 

In hoofdstuk 8 worden de resultaten getoond van een in vivo analyse in lever weefsel 
peroperatief uitgevoerd net voor een operatieve resectie. Hoofdstuk 9 vergelijkt de 
nauwkeurigheid voor detectie en monitoring van response op systemische chemotherapie 
ten opzichte van de histologie in een muizen model.  Tenslotte hebben we de potentie 
onderzocht van directe kwantificatie en terugkoppeling van lever steatosis door DRS en FS. 
Dit is een klinisch relevante vraag tijdens uitgebreide lever operaties zoals transplantaties en 
majeure resecties (Hoofstuk 10). 

Dit proefschrift wordt in deel 4 beëindigd met algemene conclusies van alle resultaten 
en met een uiteenzetting naar toekomstige stappen richting het ontwikkelen van medische 
gereedschap met daarin optische spectroscopie technologieën geïncorporeerd (Hoofdstuk 11). 
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Introduction

Modern tissue imaging technologies are essential tools in state of the art management 
in all stages of cancer treatment. In cancer screening, early detection of a cancer, preferably 
before differentiation into invasive or metastatic disease, is essential for optimal chance of 
curative therapy. In cancer staging, before an optimal therapeutic plan can be decided on, 
it is necessary to describe both anatomical extent and histological origin of a suspected 
malignancy. In cancer treatment, complete surgical resection of a tumor is necessary for 
best chances of long-term survival, optimal intra-operative tumor visualisation improves 
the accuracy of a complete resection. Moreover, accurate tumor localisation is vital for 
optimal treatment with ablation techniques or radiotherapy. Finally, imaging is essential 
for therapy response monitoring and subsequent management of systemic treatment. 

Various imaging techniques, such as x-ray, ultrasound, computed tomography (CT), 
single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI) 
and photon emission tomography (PET), are used for diagnosis and treatment monitoring 
in cancer. The threshold of detection of cancer tissue is dependent on the minimum 
spatial resolution of the available imaging technique. Despite recent technological 
advances, such as the use of novel radiotracers for improved spatial resolution and the 
combination of different imaging modalities into single examinations (e.g. PET-CT), the 
minimum spatial resolution of various imaging techniques still has a current range in the 
order of millimetres 2-5. This results in a detection threshold for solid tumors at a minimum 
of 108 to 109 cells or 0.5 to 1cm3 of solid tissue 15. 

Over the last two decades, one of several new emerging technologies with more 
accurate tissue sensing properties is that of optical spectroscopy (OS). OS is the study of 
changes in the spectral distribution of light after interaction with molecules in a tissue. 
The main notable changes within a light spectrum after interaction with tissue are a result 
of either absorption or scattering of light or due to the laser induced fluorescence and 
Raman scattering. Using OS it is possible to obtain an optical fingerprint of the tissue 
by illuminating tissue with a selected spectral band of light and performing subsequent 
analysis of the characteristic scattering, absorption, fluorescence and Raman patterns. 
These spectral patterns present specific quantitative biochemical and morphological 
information from the examined tissues depending on cellular metabolic rate, vascularity, 
intra-vascular oxygenation and alterations in tissue morphology. Depending on the chosen 
OS technique, specific differentiation between tissues becomes possible based on the 
differences on a cellular or molecular level 15-22.

With these differentiation qualities, OS is proving to be more sensitive in determining 
relevant tissue properties, for example distinguishing normal tissue from malignant 
tissue, than conventional imaging techniques. Hence, OS is progressively being explored 
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for sole use as well as combined use with conventional imaging techniques in diagnosis 
and therapy of cancer 15,41. Analysis with OS can be performed on tissue surfaces during 
endoscopic procedures or on solid organs during minimal invasive or surgical procedures. 
The wavelengths of emitted light that are generally used in these applications span from 
the visible (400 - 750nm) to near-infrared (750 - 2500nm) wavelengths. Specific focus 
of spectroscopic applications has been put towards the early detection and diagnosis of 
cancer, preferably in the precancerous stages. Furthermore towards the intra-operative 
analysis of surgical resection margins and finally towards the possibilities of early therapy 
response monitoring, aiming at decreasing unnecessary overtreatment of ineffective and 
costly chemotherapy. 

With this review we aim to highlight the current advances of the field of optical 
spectroscopy. We will specifically focus on three of the most practiced optical spectroscopy 
techniques; Diffuse Reflectance Spectroscopy (DRS), Fluorescence Spectroscopy (FS) and 
Raman Spectroscopy (RS), and their possible future applications in the detection and 
treatment of cancer. 

Diffuse Reflectance Spectroscopy 

DRS measures the intensity of diffusely reflected light after it has undergone 
absorption and scattering interactions with tissue for each wavelength of light produced 
by a broadband light source (Figure 1a - chapter 1). The intensity of reflected light after 
being scattered as a function of the wavelength defines the reflectance spectrum 22.

Overall tissue absorption can be analyzed through the known absorption coefficients of 
physiologically relevant molecules in the tissue in its pure form. The absorption coefficient 
from each molecule is directly related to the concentration of this absorber in the tissue. 
The concentration can be directly quantified from the reflected light spectrum. The main 
absorbers in soft tissues of the visible spectrum of light are oxygenated and deoxygenated 
haemoglobin and ß-carotene. Primary absorbers in the near infrared spectrum of light are 
water, adipose tissue and collagen 23.

The scattering coefficient contains information of the underlying cellular structure, 
and is sensitive to size and density of cellular and subcellular structures; thus, it can 
be altered by changes in tissue such as cell death and proliferation of cells. The onset 
and progression of cancer is associated with significant changes in tissue structure and 
composition as well as cellular morphology 24. These specific tumor characteristics can 
be well distinguished by DRS, therefore qualifying this optical technique as a tool in 
discriminating between benign and malignant tissue.
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Fluorescence Spectroscopy 

FS focuses on spectral characteristics of specific molecules in tissue after illumination 
with light of one specific wavelength 21,22. These molecules (or fluorophores) will absorb 
the light energy and be activated from ground state to an excited state. Upon de-excitation 
the molecules generate fluorescence light with a different wavelength than the excitation 
wavelength (Figure 1b - chapter 1). The shape and intensity of the fluorescence spectrum 
depends on the concentrations of the fluorophores in the target tissue 27. Discrimination 
between different tissue types is possible based on the molecular specific fluorescence 
characteristics. After wavelength dependent interactions in tissue, the measured spectra 
not only contain biochemical information due to fluorescence, but they are enriched by 
morphological information of the tissue due absorption and scattering of the fluorescence 
light. These two factors can significantly frustrate the extraction of quantitative biochemical 
information from the measured fluorescence spectra 22. To be able to identify the specific 
structural and biochemical information from the fluorescence signal, a combination of FS 
and DRS is often used in tissue analysis. The ‘intrinsic’ tissue fluorescence can be extracted 
from the measured fluorescence spectrum by correcting for absorption and scattering 
from the measured diffuse reflectance spectrum. 

The targeted molecules can be either intrinsic (endogenous fluorophores) or extrinsic 
(exogenous fluorophores) 22,27,31,32. Several endogenous fluorophores are often involved 
in transformations that occur in the neoplastic process and are therefore interesting for 
quantitative research. These include: Collagen, Elastin, Nicotinamide adenine dinucleotide 
(NADH), Flavin adenine dinucleotide (FAD), Trypotophan and Tyrosine. 

Raman spectroscopy 

RS is based on principles of an inelastic scattering process in which absorption of an 
incident photon causes a change in the vibrational mode of a molecule. With RS, tissue 
is illuminated with laser light of one specific wavelength. Absorption of a photon from 
this laser light has the ability to change the vibration mode of a molecule. A subsequent 
transition of the molecule from one vibrational level to another results in emitted 
photons that have a wavelength different from the wavelength of the light used to excite 
the molecule. This wavelength shift is also called the Raman shift. The energy shift of 
the emitted photon as a result of this phenomenon is unique for this molecule. In a RS 
spectrum, individual bands are characteristic for specific molecular motions and can 
therefore be used to identify and quantify specific tissue molecules and thus be used to 
distinguish different tissue types 42. For optimal Raman spectra, excitation wavelengths 
between 700 and 1100 nm are often selected. At these wavelengths absorption by tissues 
and body fluids are minimal, excited autofluorescence is minimal and the penetration of 
exciting and scattered radiation is maximal 43. 
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Clinical application of optical spectroscopy

In recent years several reviews have been published focussed on tissue differentiation 
using optical spectroscopy. In the following section we will review the results of these 
studies for the different organ and tissue sites with focus on the three mentioned main 
fields of OS: DRS, FS and RS.

Skin

Human skin is the most accessible human tissue. With the incidence of skin cancer 
increasing worldwide, progressive focus is put towards early diagnosis of malignant 
skin lesions. Moreover, accurate mapping of the extension of the skin lesion is crucial 
for surgical planning. Many studies with OS techniques have focussed on these clinical 
questions for (pre) malignant skin lesions.

Brancaleon et al investigated BCC lesions in vivo with FS. In 18 patients they discovered 
decreased collagen levels and increased Tryptophan levels in BCC lesions compared to 
normal human skin 44. Rajaram et al recently published the design and validation of a 
spectroscopy system for in vivo analysis based on DRS and FS 45. This paper displays an 
in vivo analysis of emission spectra within visual light spectra. Clinical studies for early 
detection and model-based analysis of both melanoma and non-melanoma skin lesions 
with this system are currently being performed by this group. 

The main focus of current research of skin cancer with optical spectroscopy has been 
with Raman spectroscopy. Gniadecka et al developed a Raman spectroscopy system for 
discrimination of several malignant skin lesions from normal skin tissue 46. Discrimination 
between melanoma and normal skin tissue ex vivo was possible with a sensitivity of 84% 
and specificity of 97%.

Choi and co-workers and Nijssen et al investigated Raman techniques for ex vivo 
analysis of basel cell carcinoma (BCC) and normal skin tissue. The former group promotes 
confocal Raman microscopy as a new method for dermatological diagnosis of BCC 47. 
Yet, their conclusions are based on analysis of only 10 patients in which they focus on 
changes in the structures of protein and lipid molecules. The Nijssen group draws similar 
conclusions after measurements using high wave number (2800-3125 cm-1) RS 48. Over 
500 Raman spectra from 28 tissue samples of BCC and normal skin tissue were compared 
and a discriminative accuracy of 100% sensitivity and 99% specificity was achieved. 

Recently, Lieber et al included normal skin samples, BCC lesions, squamous cell 
carcinomas (SCC) and inflamed scar tissue of 19 patients in a in vivo study with a RS  
system 49. They demonstrated 95% overall classification accuracy with a spectrum 
classification model. Subsequent clinical studies for further validation of their spectroscopy 
system in a larger patient population are currently in progress. 
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Oral cavity

Several groups have studied the application of OS for the early detection of (pre) 
malignant lesions in the oral cavity. Early detection and biopsy of oral lesions in the 
premalignant phase by technologies more accurate than normal visual examination would 
be of great clinical importance in the management of these oral anomalies.

Both DRS and FS have been utilised for assessing the oral mucosa. Amelink et al 
compared oral mucosa to oral SCC lesions in vivo in 31 patients with a non-invasive 
differential path-length spectroscopy (DPLS) system, a specific type of DRS. Quantitative 
information can be obtained from tissue chromophores in the superficial oral mucosa 
layers with this technique. They described an increased total blood content and a 
decreased tissue saturation in SCC lesions compared to normal mucosa. Yet, specific 
differences in the level of tissue saturation were noticed and the authors hypothesize that 
level of tissue saturation could be related to the aggressiveness of the tumor 50. 

Mallia et al published 2 papers with comparable research. Optical spectra were 
analysed by comparing spectral intensity differences at 545 and 575 nanometer. Authors 
analyzed spectra from normal oral mucosa to those of dysplastic epithelia, hyperplasia 
or SCC lesions. Depending on which tissue classes were compared a wide range in 
classification accuracy was demonstrated. Sensitivity ranged from 70 to 100% and 
specificity varied between 63 and 100% 51,52. 

Several groups used a combination of DRS and FS to investigate normal and (pre) 
malignant oral mucosa with a non-invasive system in vivo. De Veld et al described results 
from the spectrum classification of 115 oral mucosa measurements 53. With DRS, normal 
and (pre)malignant were successfully classified with a sensitivity of 82% and specificity 
of 88%. With FS these figures were 89% and 71%, respectively. Schwarz et al reported 
a sensitivity of 82% and specificity of 87% for the analysis of normal vs. (pre)malignant 
mucosa 54. McGee et al compared normal oral mucosa to dysplasia and malignant oral 
lesions of 71 patients 55. In agreement with the previous mentioned paper from the 
Amelink group, they demonstrated increased total blood content en decreased tissue 
saturation in dysplasia and malignant lesions compared to normal mucosa. Moreover, 
they displayed decreased levels of collagen and β-carotene in malignant lesions. 

Breast  

Breast tissue can arguably be considered one of the most challenging human tissue 
types due to the general inhomogeneity of the morphology of both benign and malignant 
tissue. Important current challenges within breast cancer diagnosis and treatment are 
the improvement of biopsy accuracy and margin assessment during or shortly after 
surgical resection. Most research on human breast tissue involving optical spectroscopy 
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technology has focussed on applications towards improvement in these areas of breast 
cancer management. An example of typical differences in reflected spectra between 
adipose tissue of the breast and invasive carcinoma is depicted in Figure 1a. 

Figure 1. An example of typical differences in reflected visual and near infra-red light spectra. A. A 
comparison of spectral differences between adipose tissue (green line) of the breast and invasive 
carcinoma (red line). B. An example of typical differences in reflected spectra between liver cancer before 
(orange line) and after (black line) radiofrequency ablation (RFA) of the liver. These spectra are results of 
our own data.

  1A. 

  1B. 
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All current research with DRS has concentrated on the diversity of tissue absorption 
and scattering using visible light and near infrared spectra to a maximum of 1000nm 
emission. Several studies have been performed with diffuse optical spectroscopy (DOS), 
which is a non-invasive variant of DRS. Cerussi et al analysed spectral differences between 
normal and malignant breast tissue with DOS 56. They measured increased levels of both 
total hemoglobin and water content and decreased levels of lipid in malignant tissue. 
A positive correlation was demonstrated between water content in tumors and the 
histological grading of the tumor. The clinical feasibility of a DOS system was emphasized 
in a comparable study by Kukreti et al 57. Malignant breast tumors and benign lesions 
(fibroadenoma) could be successfully discriminated with a sensitivity of 91% and 
specificity of 94%. 

Five studies with an invasive DRS system have recently been published. Empirical-
based analysis of benign versus malignant tissue displayed by Bigio et al 58 and  
Zhu et al 59 reached a sensitivity of 69% and 83% and a specificity of 85% and 76%, 
respectively. Two other studies by Brown et al 60 and van Veen et al 61 displayed an increase 
of deoxyhemoglobin as well as reduced saturation levels in malignant tissue. Veen et al 
observed increased collagen levels and scattering in malignant tissue. Interesting results 
from the Brown study were significant differences in total hemoglobin content and 
tissue saturation between tumors with and without Her2Neu amplification. In a recent 
study Nachabé et al performed an ex vivo human analysis discriminating between five 
tissue classes in the breast 38. The overall diagnostic performance was 94%. The results 
of these studies are difficult to compare due to differences in method and analysis 
specifics. However, Nachabé et al were the first to perform a comparative analysis of 
the various classification techniques used in literature based on their spectral data. They 
demonstrated that the discriminative performance between normal and malignant breast 
tissue was highly dependent on the utilised classification algorithm.  

Several groups have published results of FS within the visual light spectrum. Gupta et 
al analysed nearly 1000 spectra from normal breast tissue, fibroadenoma and malignant 
tissue 62. The authors found elevated levels of collagen, elastin, NADH and FAD in 
malignant tissue. Palmer et al performed an in-vitro analysis of normal human breast 
cells and malignant cells lines 63. Their results illustrate decreased levels of Tryptophan, 
yet NADH and FAD levels between the cell types did not differ with statistical significance. 
Chowdary et al compared fluorescence spectra of normal breast tissue, fibroadenoma 
and malignant disease after 325 nm excitation 64. Results revealed high concentrations 
of NADH in malignant compared to benign tissue. In addition, collagen levels were 
significantly highest in fibroadenoma tissue, followed by malignant tissue compared to 
normal breast tissue. With these tissue parameters, authors claim accurate classification 
and discrimination between benign and malignant tissue types to be near 100%.
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The Feld group has published several studies of breast tissue using Raman  
spectroscopy 65-67. In a study of this group by Haka et al, normal breast tissue was 
distinguished from fibrocystic change, fibroadenoma and malignant tissue in specimen 
from 58 patients 67. They used an algorithm with fat and water as key parameters and 
achieved 94% sensitivity and 96% specificity for the classification between malignant and 
normal or benign tissue. Haka et al subsequently presented the first in vivo analysis of 
breast tissue with Raman spectroscopy 65. Breast tissue from 31 patients was examined 
during partial mastectomy. Authors revealed 93% accuracy distinguishing between 
normal breast tissue, fibrocystic change and malignant tissue. Yet, only one specimen of 
malignant tissue was included in this analysis. The same authors also presented the first 
prospective Raman analysis of ex vivo breast tissue from 21 patients 66. Four breast tissue 
types were distinguished: normal breast tissue, fibroadenoma, fibrocystic change and 
malignant tissue. The prospective application of the algorithm resulted in a sensitivity of 
83% and specificity of 92%. A main distinguishing factor was the difference in nuclear-to-
cytoplasm ratio between the tissue types.

Several papers have been published in which spectroscopy modalities, mainly DRS 
and FS, have been combined 68-72. All display comparable results of spectral analysis of       
ex vivo breast tissue after illumination with visual light. By combined analysis of DRS and 
FS sensitivity figures ranging from 70% to 100% and specificity figures ranging from 74% 
and 96% were obtained. Majumder et al combined and compared all three spectroscopy 
modalities 73. Successful discrimination of four breast tissue types with DRS alone was 
described with 72% accuracy and with FS alone with 71% accuracy. A combination of these 
two yielded an improved accuracy of 84%. Raman spectroscopy was superior with an 
overall discrimination accuracy of 99%. These promising results remain to be succeeded 
by prospective and in vivo analysis. 

Cervix

Apart from breast tissue, another main focus area of optical spectroscopy studies 
has been on cervical tissue. Two reviews have summarized most of the progress made in 
this field of human oncology research. Cardenas-Turanzas et al summarized results of 26 
studies after analysis with DRS or FS. Overall results with DRS revealed sensitivities ranging 
from 72% to 100% and specificities ranging from 80% to 90%. With FS these figures 
ranged respectively from 71% to 99% and from 70% to 95%. These data suggest that 
optical spectroscopy may be able to enhance in vivo localisation of cervical abnormalities 
before advance to an invasive stage 74. Murali Krishna et al concluded main discriminative 
cervical tissue parameters in FS analysis to be collagen and NADH, which are respectively 
decreased and increased in (pre) malignant cervical tissue 75. 

More recently, Mourant et al compared the spectra of high grade squamous  
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inter-epithelial lesions (HSIL) to non-HSIL lesions and normal cervical tissue of 36 patients 
after illumination with visual light 76. The main discriminative tissue component of the 
HSIL lesions from non-HSIL lesions and normal tissue was raised tissue oxygenation. 
Discrimination between the two groups yielded a 100% sensitivity and 80% specificity.  
Chang et al compared Cervical Intraepithelial Neoplasia 2 (CIN2) lesions from normal 
cervical tissue and CIN1 lesions with a DRS system in 38 patients 77. The authors displayed 
an increased total hemoglobin content in the CIN2 lesions. In this study, tissue oxygenation 
was not significantly different between compared tissues. Furthermore, they found a 
reduced scattering coefficient in these lesions. 

Keller et al studied the effects of different epithelial (pre)malignancies with Raman 
spectroscopy including the cervix. In 102 included patients, main discriminative tissue 
parameters of CIN3 lesions compared to normal cervical tissue were reduced collagen 
levels and increased DNA content 78. 

Lung 

Studies of human lung tissue have all concentrated on a combination of spectroscopy 
with endoscopic procedures and the discrimination of normal bronchial surface from 
(pre) malignant lesions. 

Bard et al published two papers on optical spectroscopy techniques during endoscopic 
procedures of the lung. In the first paper, differential path-length spectroscopy (DPLS) 
was used to differentiate normal bronchus mucosa from dysplastic and malignant  
lesions 79. Main distinguishing parameters of malignant tissue were an increased blood 
content and scattering en decreased tissue saturation. In the second paper, DPLS results 
were compared to results of DRS and FS for their discriminative accuracy between 
malignant and non-malignant lesions during bronchoscopy 80. No significant differences 
were demonstrated in the discriminative accuracy between malignant and non-malignant 
bronchial lesions for DRS, FS and DPLS. The sensitivities and specificities for the three 
modalities were respectively 81% and 88%, 86% and 81% and 73% and 82%. For all three 
modalities combined an improved accuracy towards 90% was determined. 

Fawzy et al analysed endobronchial cancerous lesions with both DRS 81 and FS 82. They 
demonstrated a DRS system that could classify between normal and malignant lesions 
in the superficial bronchial mucosa layers with a sensitivity and specificity of 83% and 
81%. As in the Bard papers, the main discriminative parameters were increased blood 
content and decreased tissue saturation. In a comparable study using a FS system Fawzy 
et al could not match the accuracy described with their DRS system. In an analysis of 
bronchial mucosa in 40 patients a maximum sensitivity and specificity of 71% and 74% was  
reached by FS. 
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Raman spectroscopy was applied in an ex vivo lung tissue analysis by Yamazaki et al 83. 
Over 200 cancerous and non-cancerous lung tissue samples were analyzed after formalin 
fixation. Discrimination was possible with a sensitivity of 91% and a specificity of 97%. 

Gastrointestinal tract

Improvement of endoscopic procedures has also been the focus for optical 
spectroscopy studies of the gastrointestinal tract. Georgakoudi et al combined DRS 
and FS in a study in 16 patients for improved recognition of high-grade Barret’s  
oesophagus 84. With this spectroscopy analysis using visible light illumination, normal 
oesophagus mucosa could be distinguished from low- and high-grade dysplasia with 
a sensitivity of 79% and specificity of 88%. Lovat et al focussed on the discrimination 
of normal mucosa and low-grade dysplasia from high-grade dysplasia and oesophagus 
cancer with a DRS system in a study of 81 patients 85. They reached an impressive 
sensitivity of 92%, yet the specificity was only 60%. Despite the need for a prospective 
test of the algorithm, the authors conclude that DRS is a reliable tool for targeted biopsy 
of the oesophagus. 

Teh et al recently published two studies of ex vivo stomach tissue samples with Raman 
spectroscopy 86,87. In the first study, they evaluated the ability of their Raman system to 
distinguish between normal gastric mucosa and dysplastic gastric tissues. With principle 
component analysis a maximum sensitivity of 95% and specificity of 91% was yielded. 
In a subsequent study authors compared Raman spectra from normal gastric tissue to 
both intestinal-type and diffuse-type gastric adenocarcinomas in 62 patients during 
gastroscopy. Discrimination between these two specific cancer types could be made due 
to differences in collagen content, and specific differences in lipid and protein content at 
1450 cm-1. Predictive accuracies of the different tissues were between 88 and 94%. 

Dhar et al and Wang et al introduced a DRS system to colonoscopy procedures. 
The Dhar group focused on differentiation of normal colon mucosa from various (pre) 
malignant lesions. Authors obtained sensitivities and specificities between 75% and 85% 
in the differentiating the various colonic tissues 88. Wang et al found increased levels of 
total hemoglobin and decreased levels of oxygen saturation in (pre) malignant lesions, 
which corresponds to DRS results in malignant tissue from other organs 89. 

Finally, Chowdary et al performed ex vivo analysis of colonic tissue with Raman 
spectroscopy 90. Revealing discriminative accuracy between normal and malignant tissue 
of 95%, the authors stressed Raman spectroscopy to be feasible for future in vivo study in 
combination with endoscopical procedures.
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Liver

Within liver tissue research has mainly concentrated on the spectral changes during 
and after ablation therapy. Radiofrequency ablation (RFA) is an increasingly practiced 
treatment option for patients with liver a malignancy not suitable for surgery.  There are 
two important steps for optimal treatment of liver malignancy with RFA; localization of 
the ablative needle within the malignant lesions and adequate monitoring of the ablation 
process. A typical example of differences in optical spectra of a human liver tumor before 
and after RFA from our own data is depicted in Figure 1b.

Three studies have investigated the optical spectra of porcine or canine liver tissue 
in combination with spectroscopy towards possible human application.  Buttemere et al 
demonstrated a significant increase in scattering and decrease of absorption as a result 
of thermal ablation in vivo in a canine study 91. Moreover, they demonstrated a red shift 
in fluorescence peak and decrease in overall fluorescence of ablated compared to normal 
liver tissue. Anderson et al performed studies during ablation of both canine and porcine 
liver focussing on real-time spectral changes in the different zones of ablation 92. With a 
combination of DRS and FS, the authors discovered remarkable increases in DRS intensity, 
with a peak at 720 nm and decreases in FS intensity, with a peak at about 480 nm. In 
addition, they could correlate specific intensity changes to distinct phases of thermal 
ablation, while spectral changes remained stable after termination of ablation and when 
tissue had returned to normal temperature. In subsequent real-time study of porcine liver 
with FS, the authors were able to accurately detect irreversible cell damage from thermal 
injury 93. They discovered irreversible hepatocellular injury to correlate to an abrupt 
decrease of 87% fluorescence emission intensity at 470 nm. 

Hsu et al analysed changes of diffuse reflectance spectra during insertion of an 
optical needle through metastases of colorectal origin of two human patients 94. They 
demonstrated significant decrease of absorbance in the malignant lesions compared to 
normal liver tissue. Finally, Nachabé et al recently demonstrated bile to be an important 
new tissue absorber in an ex vivo analysis of human tissue 95. Bile was illustrated to be an 
important discriminative tissue component between normal and malignant liver tissue.

	
Kidney

Laparoscopy as well as percunateous local ablation of renal tumor masses has resulted 
in an increasing need for rapid discrimination of normal from malignant renal tissue. Such 
need is an important incentive for spectroscopy studies of this organ.  

Parekh et al compared results from ex vivo DRS and FS analysis of both normal 
kidney tissue and renal tumors 96. Main discriminative parameters were increased 
total hemoglobin content, collagen and scattering property in the malignant tissue. 
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Bensalah et al demonstrated significant differences between benign and malignant 
renal tissue samples ex vivo by analysing differences in spectral measurement slopes 
acquired during DRS 97. The same group displayed results of similar analysis with Raman 
spectroscopy in a subsequent paper 98. Authors analysed 27 clear cell and 6 papillary 
renal tumors in comparison to normal tissue. Classification accuracy between benign and 
malignant renal tissue spectra was 84%, moreover discrimination between malignant 
subtypes was possible with 93% accuracy. Improved figures were displayed by Wills et 
al who used Raman spectroscopy for ex vivo classification of normal renal tissue from 
nephroblastoma tissue specimen 99. They proved a sensitivity of 94% and specificity of 
91%. Lieber et al recently performed an analysis of the same renal tumor using both FS and  
Raman 100. Authors obtained 81% sensitivity and 100% specificity with FS. In the analysis 
with Raman spectroscopy these figures were improved to 93% sensitivity and 100% 
specificity. 
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Conclusions 

Multiple human organs have been included in previous studies towards incorporation 
of OS in various clinical applications. When comparing discrimination accuracy between 
the published studies and spectroscopy subtypes the wide range in these figures becomes 
apparent. In all studies involving DRS, sensitivity and specificity ranged from 67 to 100% and 
from 60 to 100%, respectively. For FS these figures are respectively between 70 to 100% and 
63 to 100%. For RS figures for sensitivity and specificity are given ranging from 82 to 100% 
and from 87 to 100%. Although, RS may generally show the highest discriminative accuracy, 
results from the different optical spectroscopy techniques cannot directly be compared. 
Major disadvantages of RS are that the spectra are more difficult to detect and analyse 
compared to FS and DRS. Moreover, instrumentation requirements are more rigorous than 
those for FS and DRS making the clinical application increasingly challenging. These are 
arguably the main reasons for OS research to focus on clinical applications with DRS and FS.

Despite variations in discrimination accuracy between recent studies, similarities in 
various tissue parameters in different organs are apparent when comparing malignant 
to benign tissue (Table 1). Increased values of total hemoglobin content, collagen, NADH 
and FAD have been measured in breast cancer. In comparison, increased total hemoglobin 
content has also been displayed in malignancies of the lungs, the gastrointestinal tract, 
the cervix and oral cavity. Hypoxia within a tumor has been documented to be a crucial 
factor with progression of the cellular malignancy 101,102. Tissue saturation was decreased in 
breast-, lung-, gastrointestinal- and oral cavity cancer. The group of Sterenborg discovered 
variations in tissue oxygen saturation of cancer tissue between different organs 50,61,79,80. 
They hypothesized that the tissue saturation measured with spectroscopy could be inversely 
correlated to the aggressiveness of the tumor. 

The measured contents of several other malignant tissue parameters are not uniform 
in all organs. Collagen levels in breast and kidney cancer are relatively raised, but in cervical, 
skin, stomach and oral cavity tumors these are relatively decreased compared to the 
surrounding normal tissue. Increased levels of collagen in breast and kidney malignancies 
are thought to be due to increased vascularity of the tumors. Collagen type 1 is an important 
component of artery walls. Another explanation could be the desmoplastic response, or 
growth of fibrous of connective tissue in and around malignancies of these organs 96,103. It 
must be stated that highest collagen contents in the breast have been measured in benign 
fibroadenoma 64,73. Decreased levels of collagen measured in cancerous tissue could be a 
result of collagenase or matrix metalloproteinase activity. Collagenases are involved in the 
transformation process between squamous epithelium and columnar epithelium 104. Up-
regulation of matrix metalloproteinases has been demonstrated in skin and oral cavity 
tumors 46,55. Decreased intensities of collagen spectra of the stomach are thought to be a 
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result of thickening of gastric mucosa layer due to malignant cells proliferation. Spectra 
intensities of collagen type 4 located in the basal membrane of the stomach are therefore 
decreased 87. 

The differences of collagen content will have an effect on the differences in the scattering 
coefficient measured in various malignant tissues. Increased scattering has been measured 
in malignancies of the breast, lung and kidney; meanwhile decreased scattering has been 
displayed in (pre)-malignant cervical lesions. These results are conform changes in collagen 
content in these organs.

Finally, variations in the level of the amino acid Tryptophan have been detected. Levels 
are generally raised in skin cancer. This has been addressed to hyperproliferation of epidermis 
of these lesions 44. However, in breast cancer levels of Tryptophan are decreased, which 
could be a result of decreased protein content in malignant cells 63. Another explanation 
could be a result of the tissue to which the breast cancer is compared with spectroscopy. 
Tryptophan levels are higher is adipose tissue compared to glandular tissue. Thus, significant 
differences in spectroscopy measurements will depend to which normal breast tissue and 
the malignant tissue is compared 105.

Future prospective

OS is an exciting optical technology that could change the workflow of cancer 
management in the near future. Extensive research across the frontier of human cancers 
has demonstrated the feasibility of optical spectroscopy for the discrimination of malignant 
tissue from normal tissue. In the next decade a translation of this technology into clinical 
practice is expected. Prospective analysis of spectroscopy systems as well as clinical in vivo 
trials in human have recently been initiated. Several areas within the care circle of cancer 
where OS could cause important improvement are surgical margin analysis, optical biopsy, 
and therapy response monitoring. 

With regard to surgical margin analysis, Wilke et al published preliminary results of 
a prospective study with a novel multi-channel optical spectral device for surgical margin 
analysis in the operating theatre directly after breast conserving surgery 106. They achieved 
a sensitivity of 79% and specificity of 67% for immediate post-operative surgical margin 
analysis compared to histopathology. Future studies towards intra-operative tumor margin 
analysis will be performed with this optical system. Keller et al performed a similar tumor 
margin analysis of breast tissue directly after excision 72. With a single-channel optical device 
DRS and FS analysis was performed at random locations of the excised breast tissue surface. 
Correct optical classification was achieved with a sensitivity of 85% and specificity of 96%. 
Many systems, however, still rely on point measurements that significantly limit screening 
of larger surface areas. For the near future, the main challenge will be the design of optical 
systems that allow rapid analysis of larger tissue surface areas.
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Within clinical practice of interventional radiology, OS techniques are expected to 
emerge within several years. Several groups are currently concentrating on developing 
and validating optical biopsy needles for in vivo use. Zhu et al 105 and Alchab et al 107 
recently published in vivo analysis of a FS device incorporated into a biopsy needle. Zhu 
et al performed FS analysis in various breast tissue location and subsequent biopsy and 
histopathology analysis were compared. They demonstrated sensitivity and specificity 
figures of 81% and 87%, respectively. Alchab et al published results of a feasibility study 
with FS-biopsy needle prototype. Results of a prospective study with this biopsy system 
are to be expected soon.

The introduction of optical spectroscopy techniques into therapy response monitoring 
of cancer lesions could in theory have an enormous impact on cancer treatment.    Current 
response monitoring is generally only performed after multiple regimens of systemic 
therapy. The prospect of a novel techniques capable of accurate monitoring of therapy 
response after only a first regimen of systemic chemotherapy would be revolutionary. 
Several groups have recently focussed on the use of OS for therapy response monitoring. 
Ostrander et al demonstrated differences in redox-ratio in estrogen-receptor positive 
breast cancer cell-lines in-vitro measured with FS. Decrease of redox-ratio correlated 
with response to therapy with tamoxifen 108. If these results could be confirmed in vivo 
redox-ratio could be an important monitor or predictor for therapy-response. Palmer et al 
displayed a combined DRS and FS system for the monitoring of tumor physiology in vivo, 
primarily based on tumor oxygenation in murine models. They demonstrated successful 
results of tissue oxygenation monitoring during fluctuation oxygen supply 18. These results 
are yet to be validated in humans in vivo. For therapy response monitoring in superficial 
tissues such as breast tissue a non-invasive spectroscopy techniques are already utilised 
in in vivo clinical studies. The Tromberg group 109,110 and Soliman et al 111 have recently 
demonstrated promising results of significant differences between treated and non-
treated patients within weeks after systemic treatment was started.

In summary, after many years of basic research, optical spectroscopy has reached 
the point for translation into clinical practice. The technique shows great potential to 
contribute to clinical decision-making in the field of clinical oncology. Clinical trials are just 
starting to appear and various clinical applications are currently been investigated. 
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Introduction

Essential first steps in the diagnostic work-up after detection of a suspected lung mass 
include describing the anatomical extent as well as the cellular origin of the tumor. Biopsy 
or fine needle aspiration of the lesion for further analysis is a crucial step in this process. 
For intra-thoracic lesions, this is often performed percutaneously. Correct localization of 
the biopsy needle within the target lesion is essential for success of this procedure and is 
frequently performed under image-guidance using computed tomography (CT). 

Recent studies have reported varying figures of overall accuracy for thoracic biopsies, 
which respectively range between 67% and 96% 112-116. Main factors influencing the biopsy 
accuracy are location and size of the intra-thoracic lesions as well as respiratory motion 
during the biopsy procedure. Moreover, even correct localization of the biopsy needle 
within the target lesion can still result in indefinite pathology diagnosis when the biopsy 
only consists of necrotic cell debris. Hence, a considerable number of patients undergoing 
percutaneous biopsies will subsequently require a repeated biopsy or even surgical 
intervention to obtain tissue material for diagnosis before an individualized treatment 
plan can be initiated. 

In recent years, promising achievements in specific tissue discrimination have been 
made in the field of diffuse reflectance spectroscopy (DRS), which may allow improved 
accuracy in cancer diagnostics 15,17,117.  With this optical technique changes in the spectral 
distribution of light, as a result of either absorption or scattering of light, are recorded 
after the light has interacted with molecules in tissue.  Subsequently, the collected 
spectral information is translated into morphological and physiological information. 
Changes in human tissue associated with malignant transformation include alterations 
in cellular composition, metabolic rate, vascularity, intra-vascular oxygenation and tissue 
morphology. DRS is sensitive to such changes in tissue, enabling discrimination between 
normal tissue and tumor. Ultimately, incorporation of this technology into biopsy 
needles may improve tip localization of the biopsy needle within the tissue compared to                                    
image-guided localization. 

Many human tissue types have been subjected to optical spectroscopy with 
promising results for clinical application of this technique. Only a few studies involving 
optical spectroscopy have focused on the characterization of human lung tissue. Those 
published mainly involved the incorporation of DRS or Fluorescence spectroscopy (FS) into 
bronchoscopy tools 79-82,118. Detection of superficial abnormalities during bronchoscopy 
procedures has proven to be enhanced with use of spectroscopy techniques within 
this setting. Sensitivity of DRS and FS ranged between 70 and 86%, specificity ranged     
between 68 and 82%.
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Recently, we have developed and validated a novel DRS system combining detection 
of visual (VIS) and near-infrared (NIR) light spectrum 23,33,38,95. In contrast to most 
previous studies with DRS that focus on the VIS part of the spectrum, we included the 
NIR (1000-1600 nm) spectrum, which enables to determine accurately water and lipid 
content in tissue as these two biological substances mainly absorb light of wavelengths  
above 900 nm 23.

The aim of this report is to assess the discrimination accuracy of our DRS system 
between normal lung tissue and tumor in an ex vivo analysis. 
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Materials and methods

Clinical study design  

This study was conducted at The Netherlands Cancer Institute (NKI-AVL) under approval 
of the internal review board committee. Lung tissue was obtained from 10 patients who 
had undergone a pulmonary resection (lobectomy or segmental resection) for primary non-
small cell lung cancer or pulmonary metastases. 

Directly after resection, tissue was transported to the pathology department for optical 
spectroscopy analysis. After gross inspection by the pathologist, the optical spectra were 
collected from macroscopic normal tissue and tumor samples. Spectroscopy measurements 
were performed on freshly excised tissue within two hours after the resection. Each specific 
measurement location was digitally photographed during the procedure. Figure 1A depicts 
a photograph of a resected lung sample with a cut through the tumor. A total of 330 optical 
measurements were performed on 67 tissue locations of both normal lung tissue and 
tumor. Resection specimens were then fixed in formalin. The measurement locations were 
subsequently selected and excised according to the measurement locations on the photos. 
These tissue samples were paraffin-embedded, cut in 2- to 3-μm-thick sections and stained 
with standard hematoxylin/eosin staining. An experienced pathologist, who was blinded for 
the outcome of the spectroscopy analysis, examined the histological slides. 

A

C D

B

Figure 1. (A) Photograph of a resected lung sample with the tumor visualized.  Examples of H&E stained 
pathology slides of  normal lung tissue with (B) pink appearance and (C) dark appearance as well as  
(D) lung tumor  tissue. 
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Instrumentation

The instrumentation and calibration procedure of our optical spectroscopy model have 
been described recently by Nachabé et al 23,33,38,95. In short, ex vivo diffuse reflectance spectra 
were measured with a portable spectroscopic system as described earlier 38. The system 
consists of a console comprising a Tungsten/Halogen broadband light source and two 
spectrometers. The spectrometers resolve light either between 400 nm and 1100 nm (Andor 
Technology, DU420A-BRDD, Belfast, Northern Ireland) or from 800 up to 1700 nm (Andor 
Technology, DU492A-1.7). An optical probe containing three optical fibers was connected 
to the optical setup. As depicted in Figure 3 in Chapter 1, one fiber is connected to the light 
source and the two other fibers are connected to the spectrometers to collect diffusely 
scattered light from the tissue. The optical probe has a diameter of 1.3 mm. The illumination 
optical fiber is located at a distance of 2.48 mm from the two side-by-side optical fibers that 
are used to collect the diffused light. Such a setup enables spectral acquisition in the range 
between 500 to 1600 nm via an optical fiber with its distal end placed against the samples. 

Light-tissue interaction and optical spectroscopy

The light delivered by the illumination optical fiber is subject to optical absorption and 
scattering. Each biological substance in the probed tissue has its intrinsic optical absorption 
property as a function of wavelength. The most common biological substances that absorb 
light are blood-derived chromophores such as oxygenated and deoxygenated hemoglobin, 
but also chromophores water and lipid 23. Oxygenated and deoxygenated hemoglobin 
have the most dominant absorption coefficients in the wavelength range below 900 nm, 
whereas water and lipid have the most dominant absorption coefficient above 900 nm 23. 
Each of these chromophores has a well determined optical absorption spectrum available 
in literature 23. The total absorption coefficient corresponds to the sum of each of these 
chromophore-specific absorption coefficient weighted by the respective volume fraction 
that it occupies within the total probed volume. In addition to absorption, light is also 
subject to optical scattering in tissue due to its morphological irregularities at a structural 
level yielding deflection of the light rays after interaction with the different substances 
present in tissue. The optical scattering is defined by a reduced scattering amplitude at an 
arbitrarily given wavelength (e.g. at 800 nm) and a slope. The diffused light that is collected 
at the detection optical fibers corresponds to a non-linear mathematical relation of the 
wavelength-dependent absorption and scattering properties 36. The volume of the probed 
diffused light in tissue is mainly dependent on the absorption and scattering properties as 
well as the distance between the illumination and collection fibers. Given the specification 
of the optical probe that was used in this study and the range of tissue absorption and 
scattering properties over the wavelength range of interest (i.e. 500 to 1600 nm), the 
average probed volume is roughly 5 mm3

.
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Spectral data processing

Two different lung tissue types were classified in the spectral data processing: normal 
lung tissue and tumor. Furthermore, measured spectra from all included measurement 
locations were separated into either the training data set (N = 171 optical measurements 
from 35 tissue locations) or the validation data set (N = 159 optical measurements from 
32 tissue locations). This was accomplished by randomly dividing measurement sets from 
different tissue locations of both normal lung tissue and tumor from each included patient 
between the two data sets. The histological breakdown of the optical measurements 
performed in these patients is displayed in Table 1. 

Finally, all acquired spectra were analyzed in two ways: First, an analytical model 
derived from the diffusion theory was used to estimate the various chromophore volume 
fractions and scattering coefficients 36. Second, a statistical classification of the tissue 
spectra was performed using partial least squares discriminant analysis (PLS-DA) 34.

Model-based analysis. 

Validation of the analytical model that was used to recover the chromophore 
volume fractions and scattering coefficients from the measurements has recently been 
described 23,33,38,95. Diffuse reflectance spectra measured from the tissue were fitted 
over the wavelength range from 500 to 1600 nm. A non-linear Levenberg-Marquardt 
inversion algorithm was used to estimate the various unknown chromophores volume 
fractions from the spectra within the analysis wavelength range. This inversion consists of 
determining the optimum volume fractions of the chromophores of interest as well as the 
reduced scattering amplitude (which we arbitrarily defined at 800 nm) and slope, which 
minimizes best the residual between the model and the measurement 23.  A total blood 
volume fraction is computed as the sum of the estimated oxygenated and deoxygenated 
hemoglobin volume fraction by considering a total hemoglobin concentration of 150 mg per 
ml of blood; oxygenation level in tissue computed as the ratio of oxygenated hemoglobin 
to the total blood volume fraction. The other parameters related to absorption are the 
water volume fraction and adipose tissue volume fraction. The absorption coefficient of 
each of these chromophores in its pure state is used as a priori knowledge during the 
fitting procedure. An example of a spectral measurement on a normal lung sample and 
a tumor sample with the corresponding fitting curve are shown in Figure 2. The spectral 
characteristics analysis was performed with Matlab software package (MathWorks Inc., 
Natick, MA). Quantified mean values for tissue parameters were calculated based on all 
tissue measurements and were displayed in box plots. 

Subsequently, we used the data from the training data set to design a decision tree 
for automated discrimination between normal lung tissue and tumor. This was performed 
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using the Gini index maximisation and has recently been described by Nachabé et al 38. 
By applying this evaluation method, thresholds of the most significantly discriminating 
tissue parameters are yielded from which all included tissue measurements could be 
differentiated into either tissue class with the least number of evaluation steps. The 
calculated thresholds were depicted as a decision tree. 
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Figure 2. Example of spectral measurements in normal lung tissue with macroscopic pink appearance (see 
Figure 1B) (blue or point-marked curve) and tumor tissue (red or circle-marked curve) and corresponding 
fits (black or solid line curves).

Measured tissue 
types

Optical measurement 
locations

(training + validation 
set)

N=67

Optical 
measurements

(training + validation 
set)

N=330

Optical 
measurement 

locations
(validation set)

N=32

Optical 
measurements
(validation set)

N=159

Normal Lung tissue 30 145 14 66

Tumor 37 185 18 93

Table 1. Histological breakdown of tissue samples used for data analysis. N = 10 patients.
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PLS-DA analysis. 

Partial least squares (PLS) analysis is a regression method to find a linear relationship 
between a response variable Y (tissue type class) and the independent variables X 
(spectra). The method is based on finding a number of principal components (PC) that 
represent as much of the variance in X as possible and are relevant to the response 
variable Y. The PLS model is generated using part of the data, the training data set. A 
discriminant analysis (DA) method is subsequently performed to obtain thresholds for 
discriminating the different responses (tissue classes). Prediction of class (tissue type) on 
the remaining data (the validation data set) is obtained by comparing the predicted PLS 
scores with the DA thresholds. The measured tissue type is assigned to one of the two 
predefined tissue classes depending on the PLS scores. The PLS-DA algorithm scripts were 
implemented in MATLAB 7.2 (MathWorks) using PLS Toolbox 5.8 (Eigenvector Research, 
Inc, Wenatchee, WA). 

Statistical analysis

The DRS-estimated quantification of each parameter in the lung tissue cannot be 
described by a parametric distribution such as the Gaussian distribution. The statistical 
differences between the two distinguished lung tissues were therefore determined 
using a non-parametric Kruskal-Wallis test 119. P-values smaller than .05 were considered 
statistically significant.

Discriminative accuracy for both the model-based and PLS-DA analysis were 
determined by comparing the means of all tissue spectra from each measurement 
location of the validation data set to the yielded thresholds from each analysis method 
and assigning each collected tissue spectrum to either defined tissue class. These results 
were then compared to the histology analysis and were subsequently presented in terms 
of sensitivity, specificity and overall accuracy. 
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Results 

Five of the included patients were men and five were women. All patients were 
smokers and the average age was 61 years old (range 38 to 74 years). Six of the patients 
had undergone neo-adjuvant treatment. Eight of the measured tumors were primary lung 
tumors and the remaining two measured tumors were metastases from the colon and 
from a melanoma.

Tissue parameter quantification

Tissue parameter quantification was performed as part of the model-based data 
analysis using all of the 330 collected optical spectra. Quantification was primarily 
performed on all relevant tissue parameters as well as on the reduced scattering coefficient 
at three different wavelengths. The tissue parameters with the most discriminative 
relevance were total hemoglobin volume fraction, water volume fraction, adipose tissue 
volume fraction and reduced scattering coefficient at 800 nm (Figure 3). Significant 
statistical differences were only demonstrated for hemoglobin volume fraction (P  < .001) 
and reduced scattering coefficient at 800 nm (P  < .01). 

Classification accuracy 
Model-based analysis. The computed decision tree based on tissue parameter 

thresholds is demonstrated in Figure 4.  The means of all collected tissue spectra from 
each measurement location could be assigned to either tissue class based on thresholds 
yielded from hemoglobin volume fraction and reduced scattering coefficient in a two-step 
analysis. Results from the tissue parameter quantification of the validation data set were 
analysed according to the defined thresholds. Compared to the histology analysis overall 
discriminative accuracy of the model-based analysis was 84% (Table 2).

PLS-DA analysis. Results from the PLS-DA classification analysis of the spectra are 
displayed in Figure 5. For several measurements difficulty discriminating between normal 
lung tissue and tumor was apparent. Overall discriminative accuracy of the PLS-DA analysis 
was 81% (Table 3).
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Figure 3. Boxplots of diagnostically relevant tissue parameters. N = 330 tissue measurements from 67 
measurement locations. Hb+HbO2 = total hemoglobin volume fraction (P = <.001); H2O = water volume 
fraction (P = .364); Fat = adipose tissue volume fraction (P = .059); μs’ = reduced scattering coefficient at 
800 nm (P = .009).

Figure 4. Discriminative thresholds for automated discrimination between normal lung tissue and tumor 
depicted in a decision tree. Thresholds were calculated based on quantification of  tissue spectra from the 
training data set. N = 37 measurements locations. μs’ = reduced scatter coefficient.
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Figure 5. PLS-DA classification of the spectra of DRS measurements comparing normal lung tissue to 
malignant tissue. Each square represents a tissue measurement from which the spectrum is compared to 
the spectral thresholds acquired from the training data set analysis. N= 32 measurement locations. Red 
circles represent the histological diagnosis tumor and green squares normal lung tissue.

Table 2. Model based classification accuracy of DRS measurements of lung tissue divided into 2 classes 
compared to the pathology analysis. N= 32 measurement locations.  Sensitivity = 89%; Specificity = 79%; 
Overall accuracy = 84%

                         Model based analysis         
 Pathology 

Tumor Normal lung tissue

Tumor                               (N=18) 16 2

Normal lung tissue         (N=14) 3 11

Table 3. PLS-DA classification accuracy of DRS measurements of lung tissue divided into 2 classes 
compared to the pathology analysis. N= 32 measurement locations. Sensitivity = 78%; Specificity =86%%; 
Overall accuracy = 81%. PLS-DA = Partial least squares discriminant analysis. 

                                                  PLS-DA
 Pathology

Tumor Normal lung tissue

Tumor                               (N=18) 14 4

Normal lung tissue         (N=14) 2 12
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Discussion

To our knowledge, this report demonstrates first published results of a novel Diffuse 
Reflectance Spectroscopy system, combining the analysis of spectral results after ex vivo 
lung tissue illumination with both visual and near-infrared light. Research with DRS on 
other human tissue has proven the potential of this technique for tissue discrimination. 
As yet, including near-infrared spectra beyond 1000 nm has not been performed 58-60,77,89. 
The advantage of having an additional spectrometer that resolves light above 900 nm is 
the possibility to measure spectra in a range where water and lipid have high absorption 
coefficients 23. Therefore accurate volume fractions of these biological substances can be 
determined and used for classification in addition to the commonly used blood derived 
chromophores and scattering parameters 79,80. Although no significant differences were 
observed between normal and tumor in water, Figure 3 shows that estimated water 
distribution is skewed to higher values in tumor than normal lung tissue. We expected 
that the water volume fraction would be significantly higher in tumor tissue compared to 
normal because normal tissue consists of air filled alveoli compared to more solid tumor 
tissue that contains no air. Because of the design of the study, most of the measured 
normal lung tissue samples resembled a dark appearance. The pathology analysis of these 
tissue samples showed collapsed alveoli in the normal lung tissue, which caused the darker 
visual appearance (See Figure 1C). The measurements in normal lung tissue with collapsed 
alveoli and subsequent decreased fraction of air could hamper the discrimination of 
normal lung tissue versus tumor based on water content. This phenomenon would not be 
expected in an in vivo setting with mainly air filled alveoli. Therefore DRS measurements 
including the NIR light spectrum, being able to determine accurately the water volume 
fraction, could be valuable for the discrimination in an in vivo setting. From the box plots, 
one can further notice that normal lung samples have significantly higher blood volume 
fraction than seen in tumors. This can be seen in Figure 1A with the malignant white 
lesion surrounded by normal lung tissue. The scattering of tissue is higher in normal than 
in tumor samples according to the box plots. This is mainly due to the pockets of trapped 
air in the alveoli of normal lung tissue (even after excision) that yields to greater light 
scattering (related to refractive index changes in tissue) as opposed to the solid tumors.

Using two different data analysis methods our DRS system yielded a promising 
overall discriminative accuracy of 84% for the model-based data analysis and 81% for the 
 PLS-DA analysis compared to the pathology analysis. These results indicate that DRS has 
the potential to enhance diagnostic accuracy during minimal invasive thoracic procedures 
in combination with conventional imaging techniques.  

In clinical practice, the main objective for correct localization of the needle within the 
target lesion is accurate identification of the tumor itself. High specificity of an imaging 
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modality is therefore the most important parameter. Hence, the higher the specificity, the 
lesser indeterminate results can be expected. In previously published papers specificity 
for thoracic biopsies, mainly performed with CT guidance, ranges from 83 to 97%. Thus 
resulting in indeterminate biopsies in 3 to 17% of the patients 112-116. An indeterminate 
biopsy is defined as a biopsy which was thought to be taken from the target lesion, but 
cannot be characterized as malignant tissue by the pathologist. A combination of biopsy 
with CT imaging and displayed DRS incorporated in a biopsy needle could in theory 
improve this biopsy specificity. This hypothesis, however, will have to be proven in future 
in vivo experiments.

Additional arguments can be given about the expected feasibility of DRS in an in vivo 
analysis. First, we would expect tissue scattering to have a more significant discriminative 
effect in an in vivo analysis. Hence, in the in vivo setting the alveoli will be filled with air. The 
expected scattering will therefore be higher compared to the ex vivo collapsed alveoli due 
to the larger refractive index mismatch between air and human tissue. Thus, the expected 
difference in the scattering coefficient compared to solid tumor will be larger. Second, 
we expect the water volume fraction to show more difference between the normal and 
tumor tissue due to the air filled alveoli. Third, we expect a greater number of significant 
discriminative tissue parameters in in vivo measurements. The main discriminative 
tissue parameters in this study were total hemoglobin volume fraction and the reduced 
scattering coefficient at 800 nm. Fawzy et al and Bard et al both demonstrated similar 
results with these tissue parameters in their in vivo analysis of bronchial mucosa 79,81. 
Another important distinguishing parameter in their studies was tissue oxygen saturation. 
Both studies demonstrated tissue oxygen saturation to be diminished in cancerous lesions 
in comparison to normal lung tissue. In our DRS analysis, no significant differences in tissue 
saturation were displayed between normal lung tissue and tumor. Overall fitting results of 
our optical measurements revealed an average oxygenation in normal lung tissue of 31% 
(SD ±22%) compared to 24% (SD ±22%) in measured tumor tissue (data not displayed). 
This is most likely due to the nature of this analysis and the ex vivo optical measurements. 
Moreover, during the operation the target tissue specimen is progressively impaired from 
blood circulation before final resection is performed. 

For future analysis we plan to combine DRS with Fluorescence spectroscopy. 
Discriminative accuracy of such a combined spectroscopy system has been proven to be 
superior to each spectroscopic technique alone in two recent studies of human breast 
tissue 69,73. Thus, an overall improvement of our discriminative accuracy is to be expected 
in future in vivo experiments of lung tissue. 

Although our results are promising, a critical assessment must be made. First, 
although analyses were performed on a significant number of measured spectra, which 
are comparable to quantities in previously published studies, a restricted number of 
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patients (n=10) and tissue specimens were utilized. Heterogeneity between patients could 
have a negative effect on the discriminative accuracy. Second, total hemoglobin volume 
fraction was demonstrated to be the main discriminative parameter. It is unclear what the 
discriminative value of a comparable analysis of lung tissue in an in vivo setting would be 
in case of local hemorrhage caused by the optical needle. Hence local hemorrhage during 
minimal invasive spectroscopy measurement could have a negative effect on optical 
measurement due to the absorption properties of hemoglobin in the visual spectrum. 

In conclusion, a novel Diffuse Reflectance Spectroscopy system was presented 
for analysis of human lung tissue. Overall discriminative accuracy of the DRS system 
compared to the pathology analysis was 84% and 81% for model-based and PLS-DA 
analysis, respectively. Based on the presented results, we conclude that DRS has the 
potential to enhance diagnostic accuracy in minimal invasive procedures of the lungs. In 
vivo experiments are currently being performed by our group to confirm these results as 
a next step towards clinical application.
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Introduction   

In the last decade, optical sensing by means of diffuse reflectance spectroscopy (DRS) 
has developed into a promising technique that could make a significant contribution to 
the diagnosis and treatment monitoring of cancer 17,117. DRS is an optical measurement 
technique that records changes in the spectral distribution of light after its interaction 
with the molecules of the tissue. Main changes in the reflected spectra are a result of a 
combination of absorption and scattering of light. By illuminating tissue with a selected 
spectral band of light and subsequent analysis of the characteristic scattering and 
absorption patterns, it is possible to obtain an ‘optical fingerprint’ of the tissue. Such 
an optical fingerprint represents specific quantitative biochemical en morphological 
information from the examined tissue and may depend on metabolic rate, vascularity, 
intra-vascular oxygenation and alterations in tissue morphology. By allowing specific 
differentiation between tissues, this technique has the potential to be incorporated into 
optical tools for cancer diagnosis and therapy. As such, DRS is progressively being explored 
for sole use as well as for combined use with conventional imaging techniques. It has been 
employed for tissue surface analysis during endoscopical procedures but also for analysis 
of tissue abnormalities in solid organs 76,79,81,88,89,97. Several groups have investigated the 
improvement of tissue biopsy and surgical margin analysis with DRS for human breast 
cancer, demonstrating promising results in the discrimination of malignant lesions from 
normal breast tissue 60,72,120.

Also in patients with primary liver malignancy or metastatic disease to the liver, DRS 
might contribute to daily clinical care. For example, DRS could be incorporated into surgical 
tools or percutaneous intervention needles enabling direct optical guidance by real time 
tissue information at the tip of the instrument. Such an approach would result in guided 
surgery by optical sensing and might improve surgical outcome by predicting resection 
planes, especially for those lesions that are difficult accessible. In addition, DRS has 
shown to identify irreversible cell damage during RFA procedures in animal experiments, 
opening the potential to monitor the efficacy during percutaneous RFA ablations for  
liver tumors 94.  Finally, DRS could be of additional value by predicting severe steatosis 
hepatis and therefore preventing too extensive resections in these high-risk patients 121-124. 

Despite the potential application of DRS in patients with liver malignancies, studies 
on the use of DRS in human liver tissue are scarce 91-94,125.  Recently, a cohort analysis in 
patients with colorectal liver metastases showed that bile concentration, as determined 
by DRS, was significantly higher in normal liver tissue compared to metastatic tumor 
tissue 95. However, in that study a method for tissue characterisation in individual patients 
was still missing. To proceed to further clinical implementation we now aim to investigate 
whether DRS is able to discriminate tumor tissue from normal liver tissue in individual 
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patients. Moreover, we are interested whether the technique could assess the presence 
of hepatic steatosis, an important limiting factor for extensive liver resections after e.g. 
prolonged chemotherapy. 
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Materials and methods

Clinical study design  

This study was conducted at The Netherlands Cancer Institute (NKI-AVL) under 
approval of the internal review board. Liver tissue was obtained from 24 patients 
undergoing partial liver resection for metastatic colorectal cancer. Shortly after resection, 
tissue was transported to the pathology department for optical spectroscopy analysis. After 
gross inspection by the pathologist, the optical spectra were collected from macroscopic 
normal liver tissue and tumor tissue. From both tissue classes, multiple measurements 
were performed; in total 393 DRS measurements in normal liver parenchyma and 435 
in metastatic liver lesions. After data acquisition, the measurement sites were marked 
and specimens were fixed in formalin. After fixation, the marked tissue measurement 
locations were selected for cutting and processed for standard Hematoxylin and Eosin 
(H&E) staining. An experienced pathologist, who was blinded for the outcome of the 
spectroscopy analysis, examined the histological slides and visually determined if the 
measurements location was either tumor or normal liver tissue. In addition, for normal 
liver tissue the degree of steatosis was determined. The quantitative assessment of 
steatosis was determined by estimating the percentage of hepatocytes containing lipid 
droplets (both micro- and macrosteatotic droplets). The pathologic degree of steatosis 
was estimated with 5% steps.   

DRS system and miniaturized optical probe 

The instrumentation and calibration procedure of our optical spectroscopy system 
has recently been described elsewhere by Nachabé et al 23,33,38,95. The system consists of a 
console comprising a Tungsten/Halogen broadband light source, two spectrometers and 
an optical probe with three optical fibers. The two spectrometers resolve light in the visible 
wavelength range between 400 nm and 1100 nm (Andor Technology, DU420A-BRDD) 
and in the near infrared wavelength range from 800 up to 1700 nm (Andor Technology, 
DU492A-1.7), respectively. The developed miniaturized optical probe contains three 
optical fibers: one fiber is connected to the light source, while the other two fibers are 
connected to the spectrometers to capture the diffusely scattered light from the tissue 38. 
The average tissue volume that is illuminated is roughly 5 mm3. The acquisition time of 
each spectrum was on average 0.2 seconds. 

	
Spectral data analysis

The light delivered by the illumination optical fiber is subject to optical absorption and 
scattering. Each biological substance in the probed tissue has its intrinsic optical absorption 
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property as a function of wavelength.  In the wavelength range between 500 and 900 nm 
the dominant chromophores are hemoglobin (oxygenated and deoxygenated) 37, bile 95 
and β-carotene 120. In the wavelength range between 900 and 1600 nm, the dominant 
chromophores are water, fat and collagen 38. Each of these chromophores has a well 
determined optical absorption spectrum available in literature 23. The total absorption 
coefficient corresponds to the sum of each of these chromophore-specific absorption 
coefficient weighted by the respective volume fraction that it occupies within the total 
probed volume. In addition to absorption, light is also subject to optical scattering in 
tissue due to its morphological irregularity. Optical scattering is defined by a reduced 
scattering amplitude at an arbitrarily given wavelength (e.g. at 800 nm) and a slope. The 
scattering characteristics are dependent on the cellular structure of the target tissue and 
are sensitive to size and density of cellular and subcellular structures. Total scattering 
is composed of Mie scattering (scattering of cellular particles which have a diameter of 
the same or higher order of magnitude than the wavelength) and Rayleigh scattering 
(scattering of cellular particles which have a diameter smaller than the wavelength).

An analytical model was used to estimate the various chromophore volume fractions 
and scattering coefficients from all the acquired spectroscopy measurements. This model 
was first described by Farrell et al 36. The measurements are fitted with the analytical model 
by applying a non-linear Levenberg-Marquardt inversion algorithm. Diffuse reflectance 
spectra acquired from the tissue were fitted and analyzed over the wavelength range from 
500 to 1600 nm. Spectral characteristics analysis was performed with a Matlab software 
package (MathWorks Inc., Natick, MA). Quantified mean values for each tissue parameter 
were calculated and displayed in boxplots. 

Tissue classification analysis

A Classification And Regression Tree (CART) algorithm was used to automatically 
classify each collected tissue into either of the two defined tissue types (normal liver 
tissue or tumor tissue) based on the parameters (i.e. volume fractions of the various 
chromophores and the reduced scattering properties) derived from the measurements 37.  
With the CART algorithm, a decision tree is created based on the five most significantly 
different tissue chromophores and scattering parameters using a leave-one-out (LOO) 
cross validation scheme. Each spectrum is separately classified as either normal liver 
tissue or tumor tissue based on the calculated thresholds in the decision tree and was 
subsequently compared to the histology analysis and presented in terms of sensitivity 
and specificity. An advantage of the CART method is that the results can easily be 
interpreted and correlated to clinical details, since the input parameters are thresholds 
of the calculated values of the main tissue parameters. The CART analysis was performed 
for all acquired data collectively and also for each included patient individually. For the 
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individual analysis, all measurements in each defined tissue class were analyzed and 
compared to the corresponding histological diagnosis. We chose an arbitrary threshold 
of an 80% agreement between all DRS measurements at a marked tissue site and the 
histopathological diagnosis of that site to either determine the DRS measurements as 
correct (≥80%) or define the measurements as uncertain (<80%). 

Statistical analysis

The DRS-estimated quantification of each parameter in the liver tissues cannot be 
described by a parametric distribution such as the Gaussian distribution. The statistical 
differences between normal liver tissue and tumor tissue were therefore determined using 
the non-parametric Kruskal-Wallis test 119.  P-levels smaller than 0.05 were considered 
statistically significant. The lipid fraction scored by the pathologist was the area fraction 
(Larea) of the slide containing lipid, while with the DRS method we determine the volume 
of lipid fraction. Assuming a homogeneous volume distribution this area fraction can be 
translated in a volume lipid fraction (Lvolume) according to Lvolume = (Larea)

3/2. For the correlation 
between the DRS and pathologists quantification of steatosis, we used Spearman’s rank 
correlation test. Analysis was performed using SPSS (Statistical Package for the Social 
Sciences, version 16.0).
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Results

A total of 24 patients were included in this study, 14 were male and 10 were female. 
The origin of the tumor was the colon in 17 cases and the rectum in 7 cases. Figure 1 
shows the typical tissue spectra of both normal liver parenchyma and incised liver 
tumor tissue (colorectal liver metastases) from one of these patients. Notable spectral 
differences between the two tissue types are apparent. Photos of the corresponding 
tissue measurements and H&E stained tissue samples of the measurement locations are 
displayed on the right. 

Tissue classification analysis

Figure 2 displays boxplots of the five most significant tissue parameters as determined 
by spectral analysis. All of these parameters displayed P-values < 0.0001 when distinguishing 
normal liver tissue from liver tumor tissue. The most significant tissue chromophores were 
total hemoglobin, fat and bile content. The most significant scattering parameters were 
the scattering at 800 nm and the ratio between the Mie scattering and the total scattering. 

Based on these five tissue parameters a decision tree was created using the CART 
algorithm. Table 1 displays the classification accuracy of this decision tree for all optical 
DRS measurements when compared to the histology analysis. A total of 780 out of the 828 
optical measurements were correctly classified in either normal liver tissue or liver tumor. 
This resulted in a sensitivity and specificity of both 94%.

The results of the analysis for each patient individually are displayed in Table 2. For 
each patient, the ratio of the number of correctly classified tissue measurements for 
both normal liver tissue and liver tumor tissue is illustrated. The data show that for each 
individual patient the defined tissue class on the basis of DRS measurements corresponds 
to the ultimate histological diagnosis. Therefore, the accuracy of DRS to predict either 
tissue class (normal tissue or tumor tissue) was 100%.

	
Hepatic steatosis

Figure 3a represents the correlation of the estimated percentage of steatosis in 
normal liver tissue as scored by the pathologist to the quantification of fat by the DRS 
analysis. The Spearman’s rank correlation coefficient is 0.86. Figures 3b, c and d display 
examples of the optical spectra and corresponding histology specimen of three patients 
with different levels of steatosis in the normal liver parenchyma. The spectrum at the 
vicinity of 1211 nm is mainly dominated by absorption of light by lipid cells. Alteration of 
the spectra in this wavelength band is observed with increasing lipid content 23.
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Figure 1. Comparison of two typical tissue spectra of normal liver tissue (green) and metastatic liver tumor 
(red). (A) The optical spectra indicate the intensity of light received by the optical needle as a function 
of the wavelength for both tissue types. Displayed on the right is an incised resection specimen showing 
the typical white metastasis in the middle and the different positions of the optical probe in normal liver 
tissue (B) and tumor tissue (C). Picture (D) and (E) show the corresponding histology micrographs of 
normal and tumor tissue (H&E staining). * Normal liver parenchyma, ** Liver tumor, † Optical needle.
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Figure 2. Boxplots of relevant tissue parameters and scattering coefficients calculated by model analysis; 
N=828 optical measurements. For all boxplots shown the P-values are   < 0.0001. The median values for 
normal liver tissue vs. tumor tissue are respectively: Total haemoglobin concentration 79 µM vs. 27 µM; 
Fat 7% vs. 2%; Bile 6% vs. 1%; Scattering amplitude 19 cm-1 vs. 11.5 cm-1 and Mie to total scattering ratio 
0.35 vs. 0.55.
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Figure 3. (A) Comparison of the quantification of the total steatosis by DRS compared to the histological 
analysis by a pathologist. The Spearman’s rank correlation is 0.86. Examples of liver biopsies from three 
patients with different levels of steatosis are displayed below. The optical spectra indicate the intensity of 
light received by the optical needle as a function of the wavelength. Specific wavelengths from which the 
fat volume concentration was calculated are indicated with dashed lines. For each acquired spectrum, the 
corresponding histology slide (H&E staining) is displayed on the right. The fat volume % calculated with 
DRS and determined by pathology analysis for each patient were: (B) 5% and 0%; (C) 18% and 25% and 
(D) 28% and 45%, respectively. 
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                                                      DRS  
   Pathology

Liver tumor Normal liver tissue           

   Liver tumor                         (N=435) 410 25

   Normal liver tissue            (N=393) 23 370

Table 1. Comparison of each optical spectrum classified with CART analysis into normal liver tissue or liver 
tumor compared to the histological diagnosis for each measurement location. (N = 828 measurements). 
Sensitivity = 94%; Specificity = 94%

DRS measurements 
normal liver tissue Clinical diagnosis DRS measurements 

liver tumor Clinical diagnosis

Patient 1 Normal (5/5) Normal liver Tumor (5/5) Tumor

Patient 2 Normal  (23/24) Normal liver Tumor (33/35) Tumor

Patient 3 Normal  (19/19) Normal liver Tumor (18/18) Tumor

Patient 4 Normal  (20/20) Normal liver Tumor (23/24) Tumor

Patient 5 Normal  (10/10) Normal liver Tumor (10/10) Tumor

Patient 6 Normal  (10/10) Normal liver Tumor (15/15) Tumor

Patient 7 Normal  (10/10) Normal liver Tumor (15/15) Tumor

Patient 8 Normal  (10/10) Normal liver Tumor (15/15) Tumor

Patient 9 Normal  (9/9) Normal liver Tumor (23/23) Tumor

Patient 10 Normal  (16/16) Normal liver Tumor (18/18) Tumor

Patient 11 Normal  (20/21) Normal liver Tumor (20/20) Tumor

Patient 12 Normal  (15/15) Normal liver Tumor (4/4) Tumor

Patient 13 Normal  (16/16) Normal liver Tumor (15/15) Tumor

Patient 14 Normal  (27/27) Normal liver Tumor (12/13) Tumor

Patient 15 Normal  (15/15) Normal liver Tumor (20/20) Tumor

Patient 16 Normal  (15/15) Normal liver Tumor (20/20) Tumor

Patient 17 Normal  (15/15) Normal liver Tumor (15/15) Tumor

Patient 18 Normal  (15/15) Normal liver Tumor (19/19) Tumor

Patient 19 Normal  (14/15) Normal liver Tumor (9/10) Tumor

Patient 20 Normal  (19/20) Normal liver Tumor (39/40) Tumor

Patient 21 Normal  (15/15) Normal liver Tumor (15/15) Tumor

Patient 22 Normal  (25/26) Normal liver Tumor (24/25) Tumor

Patient 23 Normal  (20/20) Normal liver Tumor (21/21) Tumor

Patient 24 Normal  (25/25) Normal liver Tumor (20/20) Tumor

Table 2. Analysis of all performed optical measurements for each included patient individually. 
Between brackets, the first number is the amount of measurements the classification model correctly 
identified, second figure the total number of measurements performed in either normal liver tissue or liver 
tumor for each individual patient. The clinical diagnosis depends on the accuracy of the DRS measurements; 
ratio ≥80% - the DRS diagnosis is accepted or ratio <80% - the diagnosis is considered uncertain.
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Discussion

DRS has been demonstrated to be a promising new optical technique for tumor 
diagnosis by multiple studies for over a decade 50,51,58,61,68-71,79,81.  For several human tissue 
types, such as breast and oral cavity, an accuracy of up to 90% and 100% respectively were 
described for discrimination between normal tissue and tumor tissue. A limited number 
of studies investigated the application of DRS in human liver tissue, mainly focusing on 
spectroscopic assessment of thermal ablation 91-93,124,125. In a recent paper, however, 
we demonstrated that the quantification of bile by DRS analysis offers the opportunity 
for more specific tissue discrimination in liver, such as between normal liver tissue and 
metastatic tumor tissue 95. In continuation on these results we hypothesized that also in 
liver DRS is able to reach a high accuracy for the detection of tumor tissue. In the collective 
analysis of 828 optical measurements of 24 liver specimens, we indeed observed a 
sensitivity and specificity of DRS of 94% when compared to the pathology analysis. 

The performance of this tissue discrimination was based on the estimated 
hemoglobin, lipid and bile content as well as the reduced scattering amplitude and the 
Mie to total scattering ratio. From these derived parameters, it can be seen that normal 
tissue contains more blood, bile and fat than the tumor tissues. The finding with respect 
to blood correlates with the macroscopic observations (Figure 1B and 1C) as normal 
liver is much more abundant in red blood cells compared to metastatic tumor tissue. An 
interesting observation compared to previous studies in other organs is the decreased 
total haemoglobin content in liver tumor compared to normal liver parenchyma. Previous 
studies have all detected higher total haemoglobin content in cancer lesions compared 
to normal tissue 50,59,81,89,120. An explanation for this difference could be due to the fact 
that normal liver tissue distinguishes itself from most other human organs by a relatively 
high vascularisation. As notable in figure 1 metastatic lesions often show significant 
necrotic areas due to poor vascularisation. Bile was less present in tumors as it concerns 
metastases from colorectal cancer and therefore very little bile is expected at these tumor 
sites. Another finding is that hardly any fat is present in tumors according to the derived 
fat content from the optical measurements. In general, hepatic metastases do not contain 
fat although rare cases with foci of fat in the metastases exist. Furthermore, normal 
tissue is found to have higher reduced scattering amplitude with a lower Mie scattering 
contribution as compared to tumor. This suggests that normal tissue has a larger density 
of small particles than tumors. 

It must be noted that the present study was conducted in ex vivo liver tissue. It 
remains to be determined whether all specific tissue parameters will be comparable in 
human tissue in vivo. For example, minor haemorrhages might bear an effect on total 
haemoglobin content. Oxygenation of tissue might significantly change after resection. For 
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this reason we excluded this parameter form the analysis. The scattering and fat content 
parameters are unlikely to change significantly after resection since they are strongly 
linked to the morphology of the tissue. Also for bile significant differences between ex 
vivo and in vivo measurements are unlikely. 

The presented results of 94% accuracy for tissue discrimination are promising, but 
with regards to the diagnostic accuracy of any medical instrument used in clinical practice, 
the main interest will be the discriminative accuracy within any individual patient.
An overview of the discriminative accuracy of the DRS measurements for all patients 
individually is presented in Table 3. DRS measurements predicted the correct diagnosis for 
both normal and tumor tissue for each patient, indicating the potential of this technology 
for image guided surgery.  The fact that the optical probe we used in this study is already 
needle sized shows that further development of specific surgical or interventional tools 
is within technical reach. Such tools could be used for open and laparoscopic surgical 
procedures as well as for interventional procedures in the radiology department. It should 
be stressed that the results of DRS measurements, including the analysis, are available 
almost real time. The present measurement and analysis time at one tissue location is 
about one second. 	

In addtion, we have demonstrated a high correlation between the estimated fat 
content of the liver by DRS and the presence of steatosis on histological examination. 
This is very relevant when major liver surgery is considered, especially in those 
patients treated extensivly with pre-operative chemotherapy. In these patients 
steatosis is often induced by prolonged chemotherapy and has been related to higher  
morbidity scores 126-129. The presented results suggest that DRS could play a role in intra-
operative decision-making concerning the extent of liver resection in these patients. 

Although our results are promising as far the use of DRS in the clinical setting 
is concerned, several steps remain to be taken. First, our conclusions are based on ex 
vivo data. The next step would be to reconfirm these conclusions in an in vivo analysis. 
Furthermore, no primary liver malignancy was included in this study and the feasibility 
of DRS in primary liver cancer remains to be studied. This is stressed by the fact that 
bile is demonstrated to be an important discriminative chromophore between normal 
liver tissue and metastatic liver disease. In contrast to metastatic disease to the liver, 
primary liver cancer cells can produce bile. Therefore, the discrimination with DRS based 
on bile concentration might not be as significant for this tumor type as for the colorectal 
liver metastases presented in this paper. Further studies are needed to investigate these 
possible differences.

In conclusion, we have demonstrated that DRS discriminates metastatic liver tissue 
from normal liver tissue with a high accuracy. Moreover, DRS proves to be able to determine 
the extent of steatosis, identifying those patients at risk for extented resections. These 
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features illustrate the potential of DRS to be incorporated into image guided surgery tools. 
A prospective in vivo analysis of DRS in liver and tumor tissue is underway to confirm the 
clinical application of this new technology for real time imaging during surgical procedures 
as well as for minimally invasive procedures in the radiology department. 
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Introduction

In the last decade, new optical guidance techniques have been implemented for 
the diagnosis and treatment of cancer 130,131. One of these new optical techniques is 
Diffuse Reflectance Spectroscopy (DRS) 17,71,117. DRS can differentiate tissue characteristics 
by their intrinsic light absorption and scattering properties at different wavelengths. 
By illuminating tissue with a selected light spectrum, an ‘optical fingerprint’ of the 
tissue is obtained which represents specific quantitative biochemical en morphological 
information. The characteristics of the DRS spectrum depend on the metabolic rate, 
vascularity, intra-vascular oxygenation and tissue morphology. Hence, DRS can provide 
detailed information of the underlying biological composition of tissue and as such has 
the potential to differentiate tumor tissue from normal tissue. In this way DRS may be 
able to improve cancer diagnosis and therapy monitoring. For example, DRS could be 
incorporated into biopsy needles, leading to an optical guided biopsy tool. Such a tool 
could reduce the number of indeterminate breast biopsies, which presently still range 
from   5 to 30% 132-135. 

However, breast tissue is arguably been considered one of the most challenging 
human tissue types for DRS analysis due to inhomogeneity in morphology 120. For 
example, breast tumors show a large diversity in histology, while the composition of 
normal breast tissue varies according to age and hormonal status. Despite this diversity 
and inter-patient variation, several groups have focussed on breast tissue discrimination  
with DRS 41,58-60,68,69,71,72. In these studies the accuracy of DRS to differentiate between 
normal and malignant breast tissue varies from 65% to 90%. All studies so far have in 
common that a collective analysis is performed on the DRS data, resulting in an overall 
discriminative accuracy of DRS for the whole study population.  

Although the results reported are promising, discriminative accuracy of DRS may be 
improved by limiting inter-patient variation. This could be accomplished by an individual 
patient analysis in which normal tissue is directly compared to tumor tissue for every 
individual patient. Moreover, such an approach also complies with clinical practice by 
providing an individual diagnosis to every individual patient.

It is the aim of the present study to determine the diagnostic accuracy of DRS in 
individual breast cancer patients. When positive, such an approach would be an important 
step towards the development of intelligent medical tools such as an optical biopsy 
needle.	
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Materials and methods

Clinical study design  

This study was conducted at The Netherlands Cancer Institute (NKI-AVL) under 
approval of the internal review board committee. Breast tissue was obtained from 
47 female patients who had undergone either a local excision or total mastectomy of 
the breast due to the presence of a fibroadenoma or (pre)-malignant disease. Shortly 
after surgical resection, tissue was transported to the pathology department for optical 
spectroscopy analysis. After gross inspection by the pathologist, the spectroscopy 
measurements were performed on freshly excised tissue within two hours after resection. 
The optical spectra were collected from macroscopic normal fat, glandular tissue 
samples and fibroadenoma lesions as well as from (pre)-malignant tissue samples. On 
average, five optical measurements were performed at each measurement location. A 
biopsy was taken from each location for histological comparison. Tissue samples were 
fixated in formalin, paraffin-embedded, cut in 2- to 3-μm-thick sections and stained with 
standard hematoxylin & eosin staining. An experienced pathologist, who was blinded 
for the outcome of the spectroscopy analysis, examined the histological slides. For each 
measurement location, the percentages of adipose, glandular and fibroadenomatous 
tissue as well as ductal carcinoma in-situ (DCIS) and invasive carcinoma were scored. The 
tissue specimen was histologically classified according to the most predominant tissue 
type within the biopsy specimen.

Instrumentation

The instrumentation and calibration procedure of our optical spectroscopy system 
has been described in recent papers 23,33,38.  DRS measurements were performed with a 
console comprising a Tungsten/Halogen broadband light source, an optical probe with 
three optical fibers and two spectrometers. The optical probe contains three optical 
fibers: one fiber is connected to the light source, while the other two fibers are connected 
to the spectrometers to capture the diffusely scattered light from the tissue (Figure 3 -  
chapter 1). The two spectrometers resolve light in the visible wavelength range between 
400 nm and 1100 nm (Andor Technology, DU420A-BRDD) and in the near infrared 
wavelength range from 800 up to 1700 nm (Andor Technology, DU492A-1.7), respectively. 
The average tissue volume that is illuminated is roughly 5 mm3. The acquisition time of 
each spectrum was on average 0.2 seconds.
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Spectral data processing 

We distinguished five different breast tissue classes in the spectral data processing: 
adipose tissue, glandular tissue, fibroadenoma, DCIS and invasive carcinoma. Additionally, 
we distinguished normal breast tissue (all tissue locations of adipose, glandular and 
fibroadenomatous tissue) from malignant breast tissue (DCIS and invasive carcinoma). 
The light delivered by the illuminating optical fiber is subject to optical absorption and 
scattering. Each biological substance in the probed tissue has its own intrinsic optical 
absorption property as a function of wavelength. These specific optical absorption 
spectra are well determined and available in literature. The total absorption coefficient 
corresponds to the sum of each of these chromophore-specific absorption coefficients 
weighted by the respective volume fractions they occupy within the total probed volume. 
In particular the parameters total haemoglobin concentration (the sum of oxygenated and 
deoxygenated haemoglobin), water, lipid, collagen volume fractions and β-carotene as 
well as the scattering amplitude at 800 nm wavelength are determined. Accurate water, 
lipid and collagen volume fraction could be derived due to the inclusion of the near-
infrared part of the spectrum (wavelength range 1000 to 1600 nm) 38. In addition, light 
is also subject to optical scattering in tissue due to its morphological irregularity. Optical 
scattering is defined by a reduced scattering amplitude at an arbitrarily given wavelength 
(e.g. at 800  nm) and a slope. The scattering of light was determined because it is 
dependent on the cellular structure of the target tissue and is sensitive to the size and the 
density of cellular and subcellular structures. An analytical model was used to extract the 
chromophore composition and the scattering properties of the tissue samples from the 
measured spectra over the wavelength range from 500 to 1600 nm 33,38,69,95,136. This model 
was first described by Farrell et al 36. The measurements were fitted into the analytical 
model by applying a non-linear Levenberg-Marquardt inversion algorithm. Spectral 
characteristics analysis was performed with a Matlab software package (MathWorks 
Inc., Natick, MA). The distribution of the quantified values of each tissue parameter was 
displayed in boxplots.

Tissue classification analysis

In the spectral data processing, breast tissue was categorized into the five defined 
tissue classes as well as two groups either as normal breast tissue or malignant breast 
tissue. A Classification And Regression Tree (CART) algorithm was used to automatically 
classify each collected tissue into one of the defined breast tissue types based on 
the chromophore concentrations and scattering parameter values derived from the 
measurements 37. With the CART algorithm, a decision tree is created based absolute 
thresholds determined from extracted tissue parameters with the most significant 
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differences between the defined tissue classes. Each spectrum is then separately classified 
based on the calculated thresholds in the decision tree based on a leave-one-out (LOO) 
cross validation method and compared to the histology analysis [20]. The CART analysis 
was performed for all acquired data collectively and also for each included patient 
individually in which both normal breast tissue and (pre)malignant tissue was measured. 
It must be noted that the classification between normal breast tissue and malignant breast 
tissue in the collective analysis was performed by randomly taking an equivalent amount 
of samples for all tissue classes corresponding to the tissue class with the lowest sample 
size within both groups. This was done to avoid overestimation of the discrimination 
accuracy due to the higher representation of one of the tissue classes over the other 
within either the normal or malignant tissue group.  Within the normal breast tissue group, 
160 tissue measurements of both adipose and glandular tissue were randomly selected 
and added to the corresponding number of fibroadenomatous tissue measurements. For 
the malignant tissue measurements, 120 invasive carcinoma tissue measurements were 
randomly selected. The CART analysis was performed for all acquired data collectively and 
also for each included patient individually. For the individual analysis, all measurements in 
each defined tissue class were analyzed and compared to the corresponding histological 
diagnosis. We chose an arbitrary threshold of 80% agreement of all DRS measurements at 
a marked tissue site with its histopathological diagnosis in order to either determine the 
DRS measurements as correct (≥80%) or define the measurements as ‘uncertain’ (<80%).

Previously, the CART analysis with LOO cross validation scheme was studied by 
Nachabé et al and compared to other generally used spectral classification algorithms 38. 
The main advantage of the CART method is that the results can easily be interpreted and 
correlated to clinical details, since the input parameters are thresholds of the calculated 
values of the main tissue parameters. 

Statistical analysis

The DRS-estimated quantification of each parameter in the breast tissue classes 
cannot be described by a parametric distribution such as the Gaussian distribution. The 
statistical differences of each parameter in the defined tissue classes were therefore 
determined using the non-parametric Kruskal-Wallis test 119.  P-values smaller than 0.05 
were considered statistically significant.
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Results

Tissue specimens	

A total of 47 breast tissue specimen from female patients were included into this 
study. The mean age at time of operation was 52 years (range 20 – 74 years). Within 
the 47 resected tissue specimen, 160 measurements were performed in 32 locations of 
fibroadenomatous lesions, 121 measurements in 24 areas of DCIS and 314 measurements 
in 35 invasive carcinoma lesions. Five of these lesions were lobular carcinomas and 30 
were ductal carcinomas. In addition, 294 measurements were taken in 79 areas of adipose 
tissue of the breast specimen and 184 measurements in 37 areas of glandular tissue, 
giving a total of 1073 DRS measurements (Table 1).

	
Cohort data analysis

Chromophore volume fractions and scattering coefficients were calculated from 
each tissue measurement using the analytical model. The distributions of each of the six 
most significantly different tissue parameters for all five distinguished tissue classes are 
depicted in Figure 1. Adipose tissue is best distinguished from the other tissue classes by 
fat, water, and β-carotene content, as well as by the scattering coefficient at 800 nm. Also 
fibroadenomatous tissue can clearly be discriminated from the other five tissue classes 
based on fat and β-carotene content. For the other tissue classes such as glandular tissue, 
invasive carcinoma and DCIS there is a notable overlap in the parameters measured and 
further analysis was performed using the CART algorithm.  

Using the results of the most significantly different tissue parameters, each 
measurement was diagnosed by the CART algorithm and assigned to one of the five 
defined tissue classes as well as classified as either normal breast tissue or malignant 
breast tissue. The results of the five-class distribution as indicated by the CART algorithm 
are displayed in Table 1. A high specificity (≥90%) for all tissue classes was noted. The 
result of discrimination between normal and malignant breast tissue samples is displayed 
in Table 2. After random selection of the tissue classes within both groups to fit the 
amount of measurements of the tissue class with the lowest sample size, the comparison 
of DRS to the pathology diagnosis yielded a sensitivity of 90% and a specificity of 88%. 
Overall accuracy was 89%. 

	
Tissue heterogeneity	

The microscopic heterogeneity of the various tissue samples is illustrated in  
Figure 2. Three examples of invasive carcinoma are displayed with different percentages 
of malignant tissue within the specimen based, respectively 20%, 50% and >90% invasive 
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carcinoma as determined by pathology analysis. The corresponding measured spectrum 
for each sample displays notable differences when compared. To further investigate how 
such differences may affect discriminative accuracy in distinguishing glandular tissue from 
invasive carcinoma, all of the 314 measurements of invasive carcinoma were divided into 
<50% or >50% malignant cells within the tissue specimen. Next, the quantification of 
tissue parameters in both groups was compared to all glandular tissue measurements. 
The results of the differences in quantification of most notable tissue parameters in 
the two malignant groups compared to glandular tissue are displayed in table 3. Both 
malignant groups can be discriminated from glandular tissue based on the parameters 
total haemoglobin count and fat. No significant differences between malignant and 
glandular tissue are illustrated for the parameters scattering at 800nm, β-carotene and 
collagen, when the percentage of invasive carcinoma within the tissue specimen is < 50%. 
These parameters did illustrate significant discriminative accuracy when ratios of invasive 
carcinoma are > 50%.

 In one of the 47 tissue specimens, all five defined tissue classes were present and 
could be examined. Results of the tissue and spectral analysis are displayed in Figure 
3. For each tissue sample, a marked heterogeneity of the histology is notable. For each 
tissue class, the acquired optical DRS spectrum is displayed. To discriminate the five 
tissue classes, the scattering coefficient at 800nm wavelength was plotted versus the fat 
content. When comparing the five tissue classes for this individual patient based on these 
two parameters (Figure 3F), the five classes can clearly be discriminated from each other 
despite tissue heterogeneity.

Individual data analysis

Since, the number of tissue classes was limited per patient, discriminative accuracy 
was focused on the ability of DRS to differentiate normal breast tissue (adipose, glandular 
and fibroadematous) from malignant breast tissue (invasive carcinoma and DCIS). Results 
of all performed measurements and the discriminative accuracy between normal and 
malignant breast tissue on an individual basis are displayed in Table 4. In all patients, 
except two, the specificity was 100%. In these two patients only 1 out of 10 and 1 out of 
17 measurements in benign tissue the DRS diagnosis was false positive for malignancy. 
In only 3 of the 36 patients the sensitivity for the diagnosis malignancy, as determined 
from all the measurements, was not 100%. In these 3 patients the percentage of false 
negative measurements varied from 5 to 37%. When an arbitrary threshold is used of 
a 80% agreement between all DRS measurements and the pathology analysis for each 
individual patient to a certain a diagnosis, only in one out of 36 patients (patient 6) the 
DRS diagnosis was defined ‘uncertain’.    
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Figure 1. Boxplots of most significantly different tissue parameters.  DCIS - ductal carcinoma in-situ;  
H2O - water; μs - scattering; μM - micromolar; λ - wavelength; nm - nanometer; cm-1 - reciprocal centimeter, 
‘+’ indication of ‘measurements considered as outliers’ 
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DRS 
Pathology Malignant breast tissue Normal breast tissue 

Invasive 
carcinoma   DCIS FA Glandular 

tissue        
Adipose 

tissue           Sens. (%) Spec. (%)

 Invasive carcinoma   
 (N=314) 268 17 6 23 0 85 90

 DCIS           
 (N=121) 22 86 1 12 0 71 95

 FA                    
 (N=160) 13 5 132 10 0 83 98

 Glandular tissue        
 (N=184) 24 12 7 141 0 77 93

 Adipose tissue           
 (N=294) 9 6 0 10 269 91 100

Table 1. Diagnosis for each tissue measurement generated by the DRS analysis compared to the 
histology diagnosis of the measurement location with the calculated sensitivity and specificity of all the 
measurements in each tissue class. DRS - diffuse reflectance spectroscopy; DCIS - ductal carcinoma in-situ; 
FA - fibroadenoma ; Sens. -  sensitivity; Spec. -  specificity

 DRS
 Pathology

Malignant tissue Normal breast tissue

 Malignant tissue             (N=241) 217 24

 Normal breast tissue     (N=480) 58 422

Table 2. Classification of tissue measurements defined as normal or as malignant breast tissue. For 
normal breast tissue 160 measurements of randomly chosen adipose and glandular tissue measurements 
are included to all fibroadenoma measurements. For malignant tissue 120 measurements of invasive 
carcinoma were randomly selected and included with all DCIS measurements. A comparison to the 
pathology analysis yielded a sensitivity of 90%, a specificity of 88% and an accuracy of 89%. DRS - diffuse 
reflectance spectroscopy
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Figure 2. Example of the pathological heterogeneity within several tissue samples defined as invasive 
carcinoma. a.u. - arbitrary units; nm - nanometer A. Invasive carcinoma ≈ 20% B. Invasive carcinoma ≈ 
50% C. Invasive carcinoma > 90%

Parameter Invasive carcinoma 0-50% Invasive carcinoma 50-100% 

THC (μM) ↑↑  ↑↑ 

Fat % ↓↓   ↓↓  

B-carotene % ~        ↓  

Collagen % ~        ↑↑      

Scattering (800 nm) ~        ↑↑ 

Table 3. Significant differences of the quantification of the most notable tissue parameters of all invasive 
carcinoma measurements with either <50% or >50% malignant cells within each tissue specimen 
compared to the glandular tissue measurements. THC - total hemoglobin content; μM - micromolar;  
nm - nanometer; ~ - Tissue parameter not significantly different  for glandular tissue compared to invasive 
carcinoma;  ↑ / ↓ - tissue parameter respectively higher of lower in the invasive carcinoma compared to 
glandular tissue with a P-value < 0.05;  ↑↑ / ↓↓ - tissue parameter respectively higher of lower in the 
invasive carcinoma compared to glandular tissue with a P-value < 0.0005.
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Adipose tissue    Mix of Adipose &  

Glandular tissue

Fibroadenomatous tissue

50% DCIS with a mix of  

Adipose & Glandular tissue

A. B.

E.D.

C.

75% Invasive carcinoma with 

Adipose & Glandular tissue

Figure 3. H&E staining of the five different tissue classes within one of the included patient specimen. 
A. adipose tissue; B. glandular tissue; C. fibroadenomatous tissue; D. DCIS; E. invasive carcinoma. The 
percentages of the main tissue components as defined by the pathologist. The DRS spectrum for each 
tissue sample is depicted. In F. the distribution of all the measurements for each defined tissue class based 
on the quantification of scattering at 800nm and Fat content from each tissue spectrum is illustrated.  
DCIS - ductal carcinoma in-situ; a.u. - arbitrary units; nm - namometer; cm-1 - reciprocal centimeter

F.
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Table 4. Illustration of all measurements for each defined tissue class for each patient individually. The 
results of the discriminative accuracy between all normal and malignant tissue measurements for each 
patient in which these both groups were present (N=36). For 11 patients only measurements in normal 
or benign breast tissue were acquired. FA - fibroadenoma; DCIS - ductal carcinoma in-situ; DRS - diffuse 
reflectance spectroscopy; sens. - sensitivity; spec. - specificity

Patient Adipose 
tissue

Glandular 
tissue FA

Clinical 
diagnosis 

DRS ‘normal 
breast 
tissue’ 

Spec.
(%) DCIS Invasive 

carcinoma

Clinical diagnosis 
DRS ‘malignant 
breast tissue’

Sens.
(%)

1 10 - - 10 / 10 100 5 - 5 / 5 100

2 - - 10 - - - - - -

3 5 4 - 9 / 9 100 10 10 20 / 20 100

4 5 - 20 - - - - - -

5 5 9 - 14 / 14 100 - 9 9 / 9 100

6 - 10 - 9 / 10 90 8 - 5 / 8 63

7 - 4 - 4 / 4 100 - 20 20 / 20 100

8 - 10 - 10 / 10 100 - 5 5 / 5 100

9 5 4 -  9 / 9 100 - 10 10 / 10 100

10 5 - - 5 / 5 100 - 10 10 / 10 100

11 - - 28 - - - - - -

12 8 - 25 - - - - - -

13 5 - - 5 / 5 100 21 - 21 / 21 100

14 4 - - 4 / 4 100 - 20 20 / 20 100

15 5 - - 5 / 5 100 - 10 10 / 10 100

16 8 5 - 13 / 13 100 - 19 19 / 19 100

17 10 - -  10 / 10 100 - 7 7 / 7 100

18 5 9 - 14 / 14 100 - 10 10 / 10 100

19 10 - - 10 / 10 100 - 10 10 / 10 100

20 9 - 10 - - - - - -

21 - - 24 - - - - - -

22 10 - - 10 / 10 100 14 - 14 / 14 100

23 5 - - 5 / 5 100 - 10 10 / 10 100

24 9 9 - 18 / 18 100 - 19 19 / 19 100
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Patient Adipose 
tissue

Glandular 
tissue FA

Clinical 
diagnosis 

DRS ‘normal 
breast 
tissue’ 

Spec.
(%) DCIS Invasive 

carcinoma

Clinical diagnosis 
DRS ‘malignant 
breast tissue’

Sens.
(%)

25 10 5 - 15 / 15 100 14 - 14 / 14 100

26 10 - - 10 / 10 100 4 10 14 / 14 100

27 10 10 - 19 / 20 100 20 - 19 / 20 95

28 10 10 - 20 / 20 100 - 10 10 / 10 100

29 10 - -  10 / 10 100 - 10 10 / 10 100

30 4 - 10 - - - - - -

31 5 - - 5 / 5 100 - 15 15 / 15 100

32 10 10 - 20 / 20 100 - 10 10 / 10 100

33 5 10 - 15 / 15 100 - 5 5 / 5 100

34 6 5 5 16 / 16 100 5 5 10 / 10 100

35 4 10 - 14 / 14 100 - 5 5 / 5 100

36 10 10 - 20 / 20 100 10 10 20 / 20 100

37 5 5 - - - - - - -

38 5 - - 5 / 5 100 10 10 20 / 20 100

39 5 4 8 - - - - - -

40 5 - 5 - - - - - -

41 5 5 - 10 / 10 100 - 5 5 / 5 100

42 5 5 - 10 / 10 100 - 5 5 / 5 100

43 10 - - 10 / 10 100 - 10 10 / 10 100

44 5 5 - 10 / 10 100 - 10 10 / 10 100

45 10 7 - 16 / 17 94 - 10 9 / 10 90

46 8 9 - 17 / 17 100 - 15 15 / 15 100

47 14 10 15 - - - - - -

Total 294 184 160 - - 121 314 - -

Table 4. Continued
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Discussion

Optical technologies, such as DRS, are increasingly been explored to support the 
diagnostic workflow in breast cancer. Heterogeneity in normal breast tissue and tumor 
tissue may, however, hamper its diagnostic accuracy. Also in the present study wide 
heterogeneity in the histology of the breast cancer was observed at the measuring sites. 
To reduce this inter-patient variability we hypothesized that an individual patient analysis 
would provide superior discriminative accuracy for DRS measurements compared to the 
generally performed analysis on patient cohorts. 

To challenge this hypothesis we performed a cohort analysis as well as an individual 
analysis for the different DRS measurements. In addition spectra were acquired in wide 
wavelength range from 500 to 1600 nm, in contrast to the commonly used 500 to 1000 
nm by other research groups 23,33. 

For the cohort analysis all measurements were grouped as either benign or malignant. 
Sensitivity and specificity were 90% and 88%, respectively, yielding an overall accuracy of 
89%. During individual analysis all measurements per patient were again categorized as 
either benign or malignant. The discriminative accuracy of this individual analysis was 
nearly 100%. Only in one patient the diagnosis was uncertain. 

Several previous studies have used DRS for analysis on breast tissue 58,59,68-73,137. These 
studies use collective data from all included patients to discriminate normal breast tissue 
from malignant breast tissue. The resulting sensitivity for distinguishing normal from 
malignant breast tissue ranged from 67% to 87%, specificity from 76% to 96%. The results 
from the collective analysis of normal vs. malignant tissue in the present study display 
comparable results 58,59,70-73.  Yet, an honest comparison between studies remains difficult 
due to the many different data analysis techniques used. 

In contrast to most others papers, we distinguished five different tissue classes. For 
this purpose, DRS was performed in a wider wavelength range than previously displayed. 
Recent findings by Taroni et al showed that collagen is an important absorber to include 
in the model for fitting the measured spectra as it has distinct absorption features 
above 900 nm 138-140. Therefore, we measured the absorption coefficient of collagen up 
to 1600 nm and included it in our model. Moreover, measurements on the wavelengths 
above 1000 nm allow better quantification of lipid and water fraction of the tissue. The 
boxplots clearly displayed a notable distribution range of the optical parameters within 
the different tissue classes. Adipose tissue and fibroadenoma could be well differentiated 
from the other three tissue classes, yet the discrimination of glandular tissue from DCIS 
and invasive carcinoma was not straightforward due to overlap in the quantification of the 
tissue parameters. This has also been reported by Volynskaya et al 69 who did not observe 
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any significant differences in collagen and β-carotene in these tissue classes as well as by 
Zhu et al 71 with similar concentrations in β-carotene and THC. 

To allow further classification several classification algorithms have been described.  
Volynskaya et al 69 and Zhu et al 71 respectively used logistic regression analysis and linear 
support vector machine. In the present study further classification of tissue classes 
was performed using a Classification and Regression Tree (CART) algorithm. The overall 
discrimination accuracy of DRS distinguishing 5 tissue classes was 84%. Sensitivity was 
lowest for glandular tissue (77%) and DCIS (71%).  Specificity for all tissue classes was 90% 
or higher.

The difficulty in discriminating between the three tissue classes glandular tissue, DCIS 
and invasive carcinoma can be explained when taking into mind that primary malignant 
degeneration in the breast is generally a gradual evolution of glandular tissue to carcinoma 
in-situ to an invasive carcinoma. Moreover, the large differences in composition between 
various cancerous lesions, as displayed in Figure 2, cause significant variations in collected 
spectra. Depending on the proportion of malignant cells within the measured specimen 
the different tissue parameters will be more or less significantly different from normal 
glandular tissue as is demonstrated in Table 3. 

This difference in tumor composition as well as sampling variation and the resultant 
effect on the differences in quantification of the tissue parameters in relation to normal 
glandular tissue prompted us to investigate a more individualised analysis of the DRS 
measurements. Indeed, overall accuracy of individual analysis was superior to the results 
of the cohort analysis. Notable improvement in the discrimination accuracy by individual 
analysis is displayed in the Figure 3. In one of the tissue specimen included in this study, 
all five distinguished tissue classes could be examined (patient 34 in Table 4). Within the 
tissue samples of this single patient an inhomogeneous histology is apparent with various 
percentages of normal and malignant tissue types within each sample. Based on the 
scattering coefficient at 800nm and fat content each of the five tissue classes could be 
distinguished.  

When we translate these results on individual analysis to the clinical practice of tissue 
biopsy, it is important to note that the acquisition of data is fast and can be performed 
real time. This means that accurate positioning of an optical guided biopsy needle within 
the target lesions becomes possible. The breast tissue analysis for each individual patient 
resulted in a correct clinical diagnosis of all normal breast tissue measurements and in 
all but one malignant tissue measurement based on an arbitrary chosen threshold of an 
80% agreement between all DRS measurements and the pathology analysis. We therefore 
argue that, smart biopsy tools that incorporate DRS into the biopsy needle could prevent 
indeterminate biopsies. 
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Although demonstrated results in this paper are promising, specific improvements 
should be noted for future studies. First, the results of this study are based on ex vivo 
analysis, before clinical use of a DRS system can be considered, presented results must 
be confirmed in an in vivo analysis.  In addition, the discriminative accuracy for glandular 
tissue could still be improved. As shown in table 1 the discrimination of glandular tissue 
is still less reliable than for adipose tissue. This may be due the general histological 
inhomogeneity in the area of breast tissue. 

In conclusion, our results demonstrate that diffuse reflectance spectroscopy could 
improve the diagnostic workflow in breast cancer. Yet, our results are based on an ex 
vivo analysis and in vivo confirmation of these results is the next step towards a possible 
clinical application. Based on the results presented in this paper, we conclude that the 
analysis of optical characteristics of different tissue classes within the breast of a single 
patient is superior to an analysis using the results of a cohort data analysis. We argue that 
for future application of DRS into clinical practice, such as breast tissue biopsy, emphasis 
should therefore be put on individual tissue analysis. A prospective in vivo analysis of 
breast tissue is underway to confirm the presented results as a next step towards the 
clinical application of smart biopsy tools and surgical instruments.  
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Introduction

Although major advances are made in cancer imaging, tissue biopsies are still crucial 
for accurate diagnosis and treatment planning in lung cancer. Centrally located, easy-
accessible lung lesions are generally sampled by bronchoscopy, whereas peripheral lesions 
are often biopsied by a transthoracic procedure under CT guidance. However, a major 
drawback of transthoracic needle biopsies is that the area of interest may be either missed 
or undersampled. Moreover, even when a biopsy needle is correctly localized in the target 
lesion, it may be non-diagnostic because only necrotic tissue is sampled. 

The overall diagnostic accuracy of transthoracic lung biopsies is influenced by tumor size, 
location, respiratory motion and number of biopsy samples taken from the tumor. Despite 
the fact that positioning of the biopsy needle can be guided by CT imaging, visualization of 
relevant structures is often limited due to thresholds in contrast and image resolution 15. 
Recent studies have reported failure rates for transthoracic biopsies up to 23% 112-115.

Optical spectroscopy techniques such as diffuse reflectance spectroscopy (DRS) may 
address these shortcomings allowing real-time monitoring of tissue characteristics at the 
tip of a biopsy needle. The spectral response of tissue to broadband light is measured and 
subsequently analyzed to derive characteristics of light scattering and absorption. These 
properties enable the discrimination between benign and malignant tissues making DRS a 
promising technique for lung cancer diagnosis.          

In various studies, DRS has been combined with Fluorescence Spectroscopy (FS) to 
improve identification of cancerous lesions in various organs 68,69,72,80,81,141-146. FS adds the 
possibility to detect intrinsic fluorophores in the measured tissue, such as collagen, elastin, 
FAD, NADH and porphyrins. Collagen and elastin are structural proteins and associated with 
cross-links and tissue structure, whereas NADH and FAD levels are indicative for cellular 
energy metabolism of tumor tissue 28. Porphyrins are organic compounds. A specific 
porphyrin is protoporphyrin IX (PpIX) that combines with ferrous iron to form the heme 
group. Some cancers such as colorectal tumors and its metastases accumulate diagnostic 
levels of endogenous PpIX as a result of a tumor-specific metabolic alterations 147. In addition, 
in a preclinical model a correlation was observed between PpIX and necrotic areas within 
tumor tissue 29. FS might be sensitive to these alterations in fluorophore concentrations. 

The potential of combining both reflectance spectroscopy and FS to detect (pre)
cancerous lung lesions has already been investigated during endobronchial procedures.  
Fawzy et al found that adding reflectance spectroscopy to FS improves the specificity for 
endobronchial-cancer detection compared to FS alone 82. Moreover, Bard et al demonstrated 
that the combined use of DRS, FS and Differential Path length Spectroscopy performed 
better than each technique separately 80.
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Most studies addressing lung cancer diagnosis with optical spectroscopy are focused 
on the use of this technique when incorporated in bronchoscopy tools 79-82. In previous 
work, we demonstrated the feasibility of DRS measurements at the tip of a biopsy needle 
and demonstrated its potential to enhance diagnostic accuracy of transthoracic biopsies. 
When all tissue measurements and patients were analyzed collectively, DRS yielded an 
overall accuracy for the identification of tumor tissue and lung tissue of 84% 148. The 
objective of the present study was to evaluate the additional value of FS as well as the 
potential of the combined system to predict tissue diagnosis in individual patients. To 
further optimize any biopsy location, the ability of DRS and FS to discriminate necrotic 
tumor tissue from vital tumor tissue was also investigated. 

Materials and methods

Ex vivo lung sample collection 

The study was conducted at The Netherlands Cancer Institute-Antoni van Leeuwenhoek 
hospital (NKI-AVL), under approval of the protocol and ethics review board. Lung tissue 
was obtained from 13 patients undergoing lobectomy or segmental lung resection for 
primary non-small cell lung cancer (NSCLC) or lung metastases from colorectal or renal 
origin. 

Instrumentation and spectral calibration

Ex vivo diffuse reflectance spectra were acquired using a portable spectroscopic system 
that has been described earlier 23,38,148. In the present study, the possibility to perform 
FS was added to the system, which consists of two light sources and two spectrometers 
(Figure 1).  For DRS measurements, a Tungsten halogen broadband light source (360-
2500 nm) with an embedded shutter was used. For FS, the system was equipped with a 
semiconductor laser (λ=377 nm) to induce autofluorescence. Two spectrometers were 
included, one which resolves the light from the visible wavelength range, i.e. 400 up to 
1100 nm (Andor Technology, DU420A-BRDD) and one which resolves near infrared light 
from 900 up to 1700 nm (Andor Technology, DU492A-1.7). The calibration procedure 
has been described elaborately by Nachabé et al 23. A 13G optical probe containing four 
optical fibers was used. Two fibers were connected to the broadband light source and laser 
and the two other fibers were connected to the spectrometers to capture light from the 
tissue. For DRS and FS the distance between the exit facets of the emitting and collecting 
fibers at the distal end was 1.90 mm and 0.32 mm, respectively. The complete optical unit 
was controlled by custom-made LabView software (National Instruments, Austin, TX) to 
acquire and save the data.
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Figure 1. Schematic overview of the combined DRS and FS optical setup. 

Figure 2. Examples of H&E stained pathology slides of lung parenchyma (A) and primary lung cancer  (B) 
with corresponding spectral measurements. (C) and (D) show typical DRS measurements (blue lines) with 
corresponding fit (red lines) from lung parenchyma and primary lung cancer, respectively. (E) and (F) show 
FS measurements (blue lines) with corresponding fitted intrinsic fluorescence (red lines) from the lung 
parenchyma and primary lung  cancer, respectively.
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Optical measurements

Within two hours after surgical resection, the freshly excised tissue was grossly 
inspected by a pathologist and sliced to allow optical measurements of macroscopic 
tumor tissue and lung parenchyma. In each tissue specimen optical measurements were 
performed at multiple locations in lung parenchyma and in tumor tissue. 

Only areas with a pink appearance were used for the lung parenchyma measurements. 
This selection was made since earlier experiments by Evers et al showed that areas 
characterized by a darker appearance proved to be collapsed, making any comparison to 
an in vivo setting with air filled alveoli difficult 148. In total 75 DRS and FS measurements 
were performed in lung parenchyma. A total of 179 DRS and FS measurements were 
acquired in malignant lung lesions.

	
Pathological evaluation

After the optical measurements, tissue samples were taken from the measurement 
locations. These were formalin-fixed and processed according to routine histopathology. 
Samples were stained with standard hematoxylin/eosin staining and examined by an 
experienced pathologist who was blinded for the spectroscopic analysis. Apart from 
tissue differentiation, slides were scored for the percentage of tissue necrosis. Optical 
measurements were compared to histopathological analysis, as gold standard. 

Spectral data analysis

DRS analytical model. In this study a widely accepted analytical model, introduced 
by Farrell et al was used to estimate the various DRS chromophore volume fractions and 
scattering coefficients 36. The main absorbing constituent (chromophores) in normal tissue 
dominating the absorption in the visible range (400-800 nm) is hemoglobin (oxygenated 
and deoxygenated), whereas water, fat and collagen are the main absorbers in the 
wavelength range 900-1600 nm 38. The main scattering parameters are the reduced 
scattering at 800 nm and the Mie-to-total scattering fraction. The total scattering of tissue 
is assumed to be defined by Mie and Rayleigh scattering. Mie scattering occurs when light 
meets objects whose size is similar to the wavelength (e.g. biological cells and cellular 
components), whereas Rayleigh scattering is elastic scattering of light by particles which 
are much smaller than the wavelength of light (e.g. macromolecular aggregates, collagen 
fibrils). The validation of the DRS analytic method has been described previously 23,33. The 
input arguments for the model are the absorption coefficient μa(λ), the reduced scattering 
coefficient μ’

s(λ), and the distance between the exit facets of the emitting and collecting 
fibers at the tip of the probe. 
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FS analytical model. Intrinsic fluorescence was calculated by correcting the acquired 
fluorescence spectra for absorption and scattering. For the latter, a modified photon 
migration method 26 was used, based on work by  Müller et al 39 and  Zhang et al 149.  In this 
theory the light propagation in a turbid medium is described in terms of photons traveling 
in paths with discrete photon-tissue interaction events where absorption, scattering 
or induction of fluorescence can occur. The corrected spectra were fitted by using the 
intrinsic fluorescence spectra (excitation at 377 nm) of collagen, elastin, NADH and FAD 
as a priori knowledge 22. The optical oxidation-reduction (redox) ratio, which is a measure 
of cellular metabolic state, is defined as the ratio between NADH and FAD 108,150.  In this 
work the optical redox ratio is expressed as NADH/ (NADH+FAD). An example of spectral 
measurements on a lung parenchyma sample and a tumor sample with the corresponding 
fitting curves are shown in Figure 2.

Porphyrin quantification. As shown by Moesta et al 147, cancer tissue may accumulate 
diagnostic levels of endogenous porphyrins. Quantification of porphyrins using our standard 
fit procedure, however, was not feasible since the exact wavelength of the fluorescence 
bands of porphyrins depend on the environment (e.g. pH) in which it is measured 151. To 
still quantify the fluorescence of porphyrins, the area underneath the porphyrin peaks 
was calculated after removing the background. This was done by connecting the minima 
on each side of the porphyrin peaks and subtracting the area beneath this line from the 
total area under the peaks.   

Classification and statistics

A Classification and Regression Tree (CART) algorithm was used to evaluate the 
performance of discriminating the different tissue types on either DRS or FS parameters 
or both. The CART algorithm is a recursive partitioning method that creates a classification 
tree from the values derived from a training set of spectral data and subsequently assigns 
a novel spectrum to a preselected tissue class by using the generated classification  
tree 37. A leave-one-out (LOO) cross validation scheme was used based on the estimated 
parameters from the fit model. Each spectrum was separately classified as either lung 
parenchyma or tumor tissue based on the calculated thresholds in the decision tree and 
was subsequently compared to the histopathological analysis. Outcome was presented in 
terms of sensitivity and specificity.

For each patient multiple optical measurements were performed at separate locations. 
These measurements allow individual patient analysis that eliminates bias from inter-
patient variation. To investigate the performance of DRS in individual patients, the LOO 
classification was performed for all measurements on individual patients. Arbitrary, when 
at least 80% of the measured DRS spectra at a specific measurement site corresponded 
to histopathological diagnosis of that site, the measurements were considered as being 
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correctly classified. Otherwise, the measurements were considered uncertain. 
The estimated DRS and FS tissue parameters could not be described by a Gaussian 

distribution. Therefore, a non-parametric Kruskal-Wallis test was applied to evaluate 
significant differences in optical parameters between lung parenchyma and tumor tissue 
for a significance level of 1% (i.e., p<0.01) 119. Both the quantified DRS and FS parameters 
were displayed in boxplots.

Results

Patient and tumor characteristics

Thirteen patients were included, median age was 60 years (range 49-70 years). Ten 
participants were men, all patients were smokers. Six patients had primary lung cancer, six 
patients had lung metastases from colorectal cancer, and one patient had lung metastasis 
from renal cell cancer. Optical measurements of one patient were not further used, since 
the site of measurement showed only mucus at histopathological analysis. The median 
tumor size was 24 mm (8 - 50 mm). 

Optical parameter quantification and classification 

In Figure 3, boxplots of relevant DRS and FS parameters are shown. Regarding DRS, 
lung parenchyma and tumor tissue differed significant with regard to total hemoglobin, 
hemoglobin oxygenation, water, collagen, reduced scattering at 800 nm and Mie-to-total 
reduced scattering fraction. No notable amounts of fat were encountered in any of the 
analyzed tissue samples. For FS measurements, significant differences between lung 
parenchyma and tumor tissue were observed for: NADH, FAD, and the optical redox ratio.

The DRS and FS parameters were used by the CART algorithm to generate a decision 
tree and calculate overall diagnostic accuracy. The sensitivity and specificity of the tissue 
classification between lung tumor tissue and lung parenchyma are displayed in Table 1. 
With DRS alone, a sensitivity and specificity was achieved of 98% and 86%, respectively. 
FS alone or a combination of DRS and FS did not improve the results.

Next, the ratio of correctly classified DRS tissue measurements in each individual 
patient was determined for both lung parenchyma and tumor tissue (table 2). Based on 
pathology analysis, four patients could not be used for the individual patient analysis. In 
these patients no lung parenchyma measurements were available. For all patients used, 
DRS results were identical to histopathology analysis, leading to an accuracy of DRS to 
characterize lung parenchyma or tumor tissue within one patient of 100%.

To further evaluate whether DRS and FS could differentiate vital tumor tissue from 
tumor necrosis, measurements were compared to histopathological data on tissue 
necrosis. Table 1 shows that FS is able to discriminate necrotic and vital tumor areas with 
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a sensitivity and specificity of both 91%. DRS alone appears to be less specific for tumor 
necrosis. 

The classification tree based on FS measurements showed that the porphyrin peak near 
625 nm was the main factor determining the high specificity of FS to distinguish necrotic 
from vital tumor tissue (figure 4). Therefore the calculated area under the porphyrin 
peak near 625 nm was compared to the amount of necrosis scored by the pathologist, 
as shown in Figure 5. The presence of the porphyrin peaks showed a correlation with 
the amount of necrosis, although considerable variation in porphyrin peak intensity was 
present. A second observation is that necrosis occurs mainly in secondary tumors rather 
than in primary tumors.

Figure 3. Boxplots of relevant tissue parameters; N=254 optical measurements. H2O=water volume 
fraction, Collagen= collagen volume fraction, μs’ (λ=800 nm) = reduced scattering coefficient at 800 nm.
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Figure 4. Difference in fluorescence spectra between vital and necrotic tumor tissue. Histology slides of 
vital (A) and necrotic (B) tissue of two different lung metastases from colorectal cancer with corresponding 
fluorescence spectra (C) and (D). The blue lines in (C) and (D) are the fluorescence measurements, whereas 
the red lines are the results of the model-based fitting procedure. (E) illustrates the quantification method 
of the additional fluorescence peaks at 600-750 nm.

Figure 5. Variation in Porphyrins related to necrosis and tumor type. In patient 13 multiple locations were 
measured.
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Table 1. Sensitivity and specificity of the tissue classification. Performance of discriminating the different 
tissue types based on Diffuse Reflectance Spectroscopy (DRS) and Fluorescence Spectroscopy (FS). Upper: 
discrimination of lung tumor tissue (N=179 measurements) vs. lung parenchyma (N=75 measurements). 
Lower: discrimination of necrotic (N=123 measurements) vs. vital (N=56 measurements) tumor.

LOO-classification DRS only (sens/spec) FS only (sens/spec) DRS+FS (sens/spec)

Tumor vs. lung parenchyma 98%/ 86% 90%/ 75% 98%/ 86%

Tumor: necrotic vs. vital 88%/ 80% 91%/ 91% 90%/ 95%

Table 2. Diagnostic accuracy by per-patient analysis. Per-patient discrimination for lung parenchyma 
versus tumor tissue, based on Diffuse Reflectance Spectroscopy (DRS) parameters. Between brackets: the 
first number indicates the number of correctly classified measurements, the second number represents 
the total number of measurements taken. The clinical diagnosis was based on histopathological analysis. 

Ratio of correctly classified 
DRS measurements in  lung 
parenchyma

Clinical diagnosis Ratio of correctly 
classified DRS 
measurements in 
lung tumor

Clinical 
diagnosis

Patient 1 Lung parenchyma (9/10) Lung 
parenchyma

Tumor (10/10) Tumor

Patient 2 Lung parenchyma (5/5) Lung 
parenchyma

Tumor (10/10) Tumor

Patient 3 Lung parenchyma (5/5) Lung 
parenchyma

Tumor (10/10) Tumor

Patient 4 Lung parenchyma (5/5) Lung 
parenchyma

Tumor (10/10) Tumor

Patient 7 Lung parenchyma (9/9) Lung 
parenchyma

Tumor (5/5) Tumor

Patient 8 Lung parenchyma (16/16) Lung 
parenchyma

Tumor (15/15) Tumor

Patient 10 Lung parenchyma (10/10) Lung 
parenchyma

Tumor (10/10) Tumor

Patient 12 Lung parenchyma (15/15) Lung 
parenchyma

Tumor (10/10) Tumor

Patient 13 Lung parenchyma (15/15) Lung 
parenchyma

Tumor (20/20) Tumor
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Discussion

In this study, both DRS and FS measurements were performed within fresh pulmonary 
specimens with tumor areas. Several DRS parameters showed significant differences 
between lung parenchyma and tumor tissue. These discriminating parameters were total 
hemoglobin, hemoglobin oxygenation, water, collagen, scattering at 800 nm and the  
Mie-to-total scattering ratio. 

In the present study, only optical reference measurements of pink colored lung 
parenchyma were used, since these were expected to be the most representative for 
the situation in vivo. The overall discriminative accuracy between lung parenchyma 
and malignant tissue was higher (92%) than observed in a study by Evers et al who also 
included measurements at parenchyma sites with collapsed alveoli 148. The comparison 
to non-collapsed, pink colored lung parenchyma in this study allowed for optimal 
identification of tumor lesions in individual patient specimens. This suggests that using 
optical spectroscopy should be feasible for in vivo identification of tumor, for example 
during transthoracic biopsy.

The differences in optical characteristics, such as in water content, collagen content 
and scattering parameters can be attributed to the fact that lung parenchyma consists of 
alveoli which are filled up with air, whereas tumor tissue has a more solid structure. Our 
setup is able to measure in the near infra-red wavelengths range up to 1600 nm where 
fat and water absorption bands exist. This enables accurate fraction estimation of these 
substances 23. Although water content proved to be a good discriminator between lung 
parenchyma and tumor, no significant amounts of fat were measured in either of the 
tissues. This is in accordance with the pathology results of the measured samples. 

The combined parameters used for analysis contained sufficient information to allow 
discrimination between lung parenchyma and tumor tissue with a sensitivity and specificity 
of 98% and 86%, respectively. Individual parameters showed considerable overlap in 
lung tissue and tumor tissue in the pooled analysis of the patient group (Figure 3). This 
may partly be due to variations from patient-to-patient. When inter-patient variation 
was eliminated by using lung parenchyma measurements as internal reference for each 
individual patient, classification of tumor spectra reached a sensitivity and specificity of 
100% for all included patients. 

Lung cancers frequently occur in patients with chronic obstructive pulmonary 
diseases. The relationship between these diseases is instead one based upon mutual risk 
factors, namely smoking 152,153. In chronic obstructive pulmonary diseases like emphysema 
normal lung tissue architecture is affected, accompanied by the destruction of alveolar 
walls. Additional research is needed for evaluating effects of obstructive pulmonary 
diseases on optical parameters.
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FS was performed to determine the intrinsic fluorescence of lung parenchyma and 
tumor. Lower concentrations of NADH and higher concentrations of FAD were observed 
in tumor tissue compared lung parenchyma, which means a decreased optical redox 
ratio in tumor. For epithelial cancer it has been found that this ratio increases for tumor  
cells 150,154 as well as for primary human mammary epithelial cell lines 108. In this ex vivo 
study we found a decrease in optical redox ratio.  After resection, the metabolism of tissue 
may change drastically which could explain the difference in results between our ex vivo 
results and the measurements in cell lines or living tissue.

A particular interesting finding is that additional fluorescence peaks at 625 nm and 
690 nm were detected in several tumors, especially when necrotic tissue was present. 
Although adding FS as additional modality does not improve the potential to detect tumor 
lesions, it is useful for identification of necrotic tumor parts. This feature could enhance 
the selection of tumor biopsy sites. For example, this would be important for specific      
sampling of vital tumor tissue when needed such as for genetic profiling for tailored 
individual treatment 155,156.  

Earlier research has shown that some cancers such as colorectal tumors and its 
metastases accumulate diagnostic levels of endogenous protoporphyrin IX (PpIX) and other 
metabolic products of porphyrin as a result of tumor-specific metabolic alterations 147. 
Croce et al investigated the presence of naturally-occurring porphyrins in a spontaneous-
mammary tumour bearing mouse model. In the tumour-bearing mice elevated levels of 
PpIX were observed in blood plasma, liver, spleen and in tumor mass 29. Remarkably high 
levels of PpIX were detected in necrotic parts of the tumor compared to the viable tumor 
areas.  They explained that both a failure to complete heme synthesis by the cells still 
alive and undergoing necrosis and a reversal of the ferrochelatase activity could account 
for this finding. This study also showed that the presence of porphyrin-peaks correlates 
with the amount of necrosis. Our findings regarding porphyrins in lung metastasis from 
colorectal cancer strongly resemble the ones described in primary colorectal tumors 
and its metastases in liver and lymph nodes 147. NSCLC can also contain considerable 
(spontaneous) necrotic parts. Whether porphyrin fluorescence is primarily associated 
with necrosis or with certain tumor types, is unknown. 

In conclusion, DRS allows for accurate real-time identification of lung tumors in 
individual patients. It has potential to improve transthoracic lung biopsy procedures. The 
results presented in this work are promising for further development of “smart” biopsy 
tools incorporating optical technology. Furthermore, FS seems able to detect areas of 
necrosis. This may either help to identify and biopsy vital tumor during biopsy, or might 
be used to evaluate response in patients who received chemo-radiation. Clinical studies 
are necessary to confirm these results and to evaluate indications. 
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Introduction

Over the last decade, significant effort has been put towards the incorporation of optical 
guidance techniques into cancer surgery 157,158. Among others, the optical spectroscopy 
(OS) techniques Diffuse Reflectance Spectroscopy (DRS) and Fluorescence Spectroscopy 
(FS) have been demonstrated to be promising techniques for tumor identification 1. When 
performing OS, tissue is illuminated by a selected spectral band of light. When reflected 
after interacting with the tissue, the light spectrum will be changed due to the specific 
absorption and scattering characteristics of the tissue. This obtained ‘optical fingerprint’ 
represents specific quantitative biochemical and morphological information from the 
examined tissue. For several human tissue types, such as breast, lung and oral cavity, 
accuracies over 80% have been described for discrimination between normal tissue 
and tumor tissue in mainly ex vivo analyses 50,51,58,61,68-71,79,81,148,159-161. Recently, we have 
demonstrated that also in surgical resection specimens of colorectal liver metastases 
(CRLM), DRS is able to accurately identify tumor lesions from normal liver 95,162,163. 

Colorectal cancer (CRC) ranks third on the list of cancer related death. During 
their lifetime up to half of the CRC patients will develop liver metastases. To date, an 
increasing number of these patients are operated by laparoscopic or even robotic liver 
resection. Tactile feedback on tumor position is missing and finding the optimal resection 
plane is challenging. In addition, many patients receive neo-adjuvant chemotherapy 
before surgery, resulting in tumor shrinkage and less well defined tumor borders during 
resection. Under such conditions, where tactile feedback on tumor location is missing or 
less accurate, smart surgical devices that are able to delineate safe resection planes could 
be of significant help to the surgeon.

To date, there are no direct in vivo methods available to discriminate hepatic colorectal 
liver metastases from normal liver tissue. During ex vivo testing, optical spectroscopy has 
shown promising results. The aim of the present study is to investigate whether also in 
vivo optical spectroscopy is able to accurately discriminate colorectal liver metastases 
from normal liver tissue and whether this is influenced by neo-adjuvant chemotherapy. 
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Materials and methods

Patients

This study was conducted at The Netherlands Cancer Institute under approval of the 
protocol and ethics review board (protocol number: NL32233.031.10; Netherlands Trial 
Register: NTR2557). Patients scheduled for an open liver resection for metastatic cancer 
were eligible for inclusion. Written informed consent was obtained from all patients.

	
Procedure

Optical measurements were performed during the surgical procedure before 
transection of the liver parenchyma. The surgeon and radiologist identified the tumor by 
ultrasound and determined the intended resection plane (Figure 1). A custom-made 14G 
hollow guidance cannula (INVIVO, Schwerin, Germany) was inserted into the normal liver 
tissue within the planned resection area and the tip was positioned under ultrasound 
guidance, first into normal liver tissue and next into tumor tissue. A 15G (1.8mm) optical 
needle was introduced through the cannula protruding 1cm into the tissue. Theatre lights 
were dimmed during the optical measurements to prevent contamination of the collected 
spectra by ambient light. Four sets of five optical measurements were performed; two 
sets in normal liver tissue and two sets in tumor tissue. Normal liver tissue measurements 
were performed at least 2 cm from the edge of the metastatic lesion. Directly following 
the optical measurements an o-twist-marker (OTM3.0SA, Biomed. Instrumente and 
Produkte GMBH, Türkenfeld, Germany) was inserted through the cannula to mark the 
measurement locations in normal liver tissue and tumor tissue 

Instrumentation 

The optical spectroscopy instrumentation and calibration procedure of our system 
has been described previously 23,33,38,95. The system consists of a console comprising a 
Tungsten/Halogen broadband light source, two spectrometers and a 15G fibre optical 
needle (INVIVO, Schwerin, Germany) containing four optical fibres. The optical needle tip 
was slanted and the distance between emitting and collecting fibres was 1.7mm, resulting 
in a probing depth of ~1-2mm. The diffusely reflected light from the target tissue was 
collected by the two spectrometers, one which resolves light between 400 nm and 1100 
nm (Andor Technology, DU420A-BRDD) and one which resolves light from 800 up to 1700 
nm (Andor Technology, DU492A-1.7). The two measured spectra were merged into one 
single spectrum from 400nm to 1600nm. The acquisition time of each spectrum was on 
average 0.2 seconds. 
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Figure 1. Schematic display of the optical measurement setup and photo example of an  
optical measurement

A B

Figure 2. Typical examples of H&E stained pathology slides of the normal liver parenchyma (A) and CRLM 
(B) with corresponding DRS and FS spectral measurements. Typical results of DRS and FS spectra are 
displayed with the optical measurement depicted as a blue line and the result of the corresponding fit 
analysis depicted in a red line. 
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Diffuse reflectance analysis

Light emitted by the illumination optical fibre is subject to absorption and scattering. Each 
biological substance in the probed tissue has its intrinsic optical absorption characteristic as 
a function of wavelength. Hemoglobin (oxygenated and deoxygenated), Methemoglobin, Bile 
and ß-carotene are the dominant chromophores in the wavelength range between 500 and 
900nm 162,164. Fat, Water and Collagen are the dominant chromophores in the wavelength 
range between 900 and 1600nm 38. These chromophores have a well-determined optical 
absorption spectrum available in literature 23,161. The specific absorption coefficient of these 
chromophores was calculated from the optical spectrum derived from the probed tissue 
specimen. The volume fraction of each chromophore within the tissue can then be estimated 
from the optically obtained absorption coefficients. 

The scattering characteristics are dependent on the cellular structure of the target tissue 
and are sensitive to size and density of cellular and subcellular structures. Optical scattering 
was defined by a reduced scattering amplitude and slope at an arbitrarily given wavelength 
of 800nm. The model used to estimate the various chromophore volume fractions and 
scattering coefficients from all the acquired spectroscopy measurements was first described 
by Farrell et al 36. The measurements are fitted with the analytical model by applying a non-
linear Levenberg-Marquardt inversion algorithm. Diffuse reflectance spectra acquired from 
the tissue were fitted and analysed over the wavelength range from 500 to 1600nm. Spectral 
characteristics analysis was performed with a Matlab software package (MathWorks Inc., 
Natick, MA).

Intrinsic fluorescence analysis

For FS, the system was equipped with a semiconductor laser (377nm) to induce 
autofluorescence. Several endogenous tissue molecules are known for dominant emission 
of fluorescence after excitation at this wavelength, such as are Collagen, Elastin, NADH and 
FAD. The acquired fluorescence spectra were first corrected for absorption and scattering 
yielding intrinsic fluorescence spectra. This was performed using a modified photon migration 
method 26 that was based on previous work by Zhang et al 149 and Müller et al 39. Concentrations 
of each tissue fluorophore could then be calculated. The metabolic state of the tissue, was 
determined by Optical redox ratio (NADH / (NADH+FAD).	

Pathology

The pathologist located the twist markers and the surrounding liver tissue was excised for 
tissue analysis. Tissue specimens from all measurement locations were first fixed in formalin, 
then paraffin embedded and processed according to standard Hematoxylin and Eosin (H&E) 
staining. Two experienced pathologists, who were blinded for the outcome of the spectroscopy 
analysis, individually examined all histological slides. Histological analyses were performed at a 
400x magnification. 
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Statistical analysis	

Analyses were performed using SPSS (Statistical Package for the Social Sciences, 
version 16.0). Statistical differences between tumor and normal liver tissue and for type of 
treatment (chemotherapy vs. non-chemotherapy) were determined using non-parametric 
Kruskal-Wallis test 119. This test replaces data by rank, adequate when data does not show 
a Gaussian distribution. P- values smaller than 0.05 were considered statistically significant. 

A Classification and Regression Tree (CART) algorithm was used to automatically 
classify tissue measurements into either of the two defined tissue types (normal liver or 
tumor tissue). CART is a prediction model that can be represented as a decision tree 37. For 
validation, leave-one-out (LOO) cross validation scheme was used. The main advantage of 
the CART algorithm is the easy way the data can be interpreted and the clinical relevance. 
The outcome parameters are sensitivity and specificity.

Results

Seventeen patients were included in the study. The average age was 62 years  
(range 38 - 74) and the majority of the patients was male (N=13). In total 19 lesions were 
optically measured and then resected. One patient had 3 lesions resected that were all 
separately measured. Seven patents (with 9 CRLM lesions) received neo-adjuvant systemic 
chemotherapy within 3 months before liver resection. The administered chemotherapy 
regimens consisted of Capecitabine and Oxaliplatin with or without Bevacizumab in a 
3-week cycle for 4 to 9 cycles.

A typical example of the DRS and FS spectra in normal liver tissue and colorectal liver 
metastases, both correlated to histopathology is depicted in figure 2. Clear differences in 
shape of the spectra can be observed between normal and tumor tissue. Typical for normal 
tissue is the significant light absorption in the wavelength region 400-600nm due to a 
rather high Total Hemoglobin Content (THC) in normal liver tissue. The reconstruction of 
the intrinsic fluorescence (especially the part below 500nm) is hampered by this high THC, 
as observed in the fluorescence spectrum with considerate ‘noise’ in this region. Notable 
observations in the FS spectrum are an additional fluorescence peak only observed in 
normal tissue at 675nm and a typical shoulder with two additional peaks only observed in 
tumor tissue at 625 and 680nm.

Tissue parameter quantification

Figure 3 shows boxplots of the various parameters for all of the 19 lesions analysed. 
All markers showed a significant difference between normal liver tissue and tumor. With 
regard to DRS, tissue discrimination was best for the tissue chromophores; THC, Bile, and 
Methemoglobin.
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For FS measurements, a significant difference between normal liver tissue and tumor 
was observed for the Optical redox ratio. In addition, 12 out of 19 tumor measurements 
showed fluorescence peaks at 625 and 680 nm that were not observed in any of the normal 
liver tissue measurements. Of these 12 tumor lesions with additional fluorescent peaks, 
a total of 9 revealed the measured peaks in all tumor locations. The FS spectra of normal 
liver tissue showed in 11 of the 17 patients a fluorescence peak near 675 nm that was not 
observed in tumor tissue. 

Neo-adjuvant chemotherapy 

Seven patients (9 tumor lesions) received neoadjuvant chemotherapy. Figure 4 shows 
the boxplots for the most discriminative parameters (THC, Methemoglobin, Bile and Optical 
redox ratio) in patients treated with or without chemotherapy. All parameters showed a 
consistent trend in both groups (chemo vs. non-chemo). In accordance to the overall analysis 
(presented in Figure 3) THC, Methemoglobin and Bile are lower in tumor tissue compared 
to normal liver tissue, while the Optical redox ratio is higher in tumor tissue compared to 
normal liver tissue.	

Tissue classification

The CART algorithm used DRS and FS parameters (THC, StO2, Water, Scattering at 
800nm, Bile, Methemoglobin, Optical redox ratio) to generate a decision tree and to 
calculate sensitivity and specificity. Table 1 shows the results for discrimination of tumor 
tissue from normal liver tissue when all data are analysed collectively as well as when 
the non chemotherapy treated lesions and chemotherapy treated lesions were analysed 
separately. Adding FS to the DRS parameters does not improve the sensitivity or specificity. 
Overall accuracy for the whole group using the DRS parameters only was 94%, for the non-
chemotherapy group and the chemotherapy group this was 88% and 96%, respectively.

Table 1. Sensitivity and specificity for the discrimination of CRLM from normal liver tissue for DRS, FS 
and DRS+FS.  Results are specified for all lesions, lesions treated by chemotherapy  (‘chemo’) or lesions 
without pre-treatment by chemotherapy (‘non-chemo’). 

Sensitivity Specificity

Tumor vs. normal liver parenchyma DRS FS DRS+FS DRS FS DRS+FS

Overall (N=484) 95% 84% 94% 92% 61% 89%

Chemo (N=226) 92% 89% 92% 100% 62% 100%

Non-chemo (N=258) 94% 87% 96% 82% 60% 80%
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Figure 3. Boxplots of relevant tissue parameters in normal liver tissue (Green) and CRLM (Red) for all 19 
measured tumor lesions. An ‘*’ indicates a significant difference between both tissue types.
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Figure 4: Boxplots of the four most significantly different tissue parameters in normal liver tissue 
(Green) and CRLM (Red) for chemotherapy (N=7 patients with 9 tumor lesions / left column) and non-
chemotherapy treated patients (N=10 patients / right column). An ‘*’ indicates a significant difference 
between both tissue types.

              Chemo Normal vs. Tumor   	          Non-Chemo Normal vs. Tumor	
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Discussion

Technical advances in the treatment of liver malignancies, such as laparoscopy as well 
as the increased use of tumor modulating agents such in neo-adjuvant systemic treatment, 
call for an increased necessity for new technologies aiding the surgeon to correctly locate 
and resect the entire tumor volume in the liver. In previous studies, we have shown that 
DRS and FS can be used to identify various types of tissue in ex vivo experiments 148,165. In 
liver tissue, we have also demonstrated that DRS can accurately discriminate normal liver 
tissue from CRLM in an ex vivo model with a sensitivity and specificity of 94% 163. 

In the present study, we aimed to make the next step towards incorporation of optical 
spectroscopy into surgical tools. We therefore investigated the accuracy of DRS and FS for 
discriminating between CRLM and normal liver tissue in vivo using a 15 Gauge disposable 
needle. We have shown that DRS can accurately discriminate tumor tissue from normal 
liver tissue with a sensitivity and specificity of 95% and 92%, respectively. These results 
confirm the conclusions of our previous ex vivo study on liver tissue. The addition of FS 
did not give added value to the overall accuracy when excluding the addional peaks found 
in the FS. Finally, earlier systemic chemotherapy treatment had no negative effect on the 
DRS accuracy; sensitivity was 92% and specificity reached 100% for chemotherapy treated 
patients. This is important as neo-adjuvant chemotherapy can influence tumor size and 
borders can be less clear. These results arguably render DRS a possible surgical tool for 
identification of CRLM during liver surgery. 

	
The most significantly discriminative tissue chromophores observed with DRS were 

THC, bile and methemoglobin. The lower concentrations of THC and bile in tumor 
tissue are comparable to our previous ex vivo liver analysis. Hence, these two tissue 
parameters can be considered important parameters for future liver tissue analysis with 
DRS. Moreover, we previously hypothesized that small bleedings at the tip of the optical 
needle could hamper our discriminative accuracy in vivo. The levels of THC measured in 
both normal liver and tumor were a factor 2 higher than we previously observed in our ex 
vivo analysis 163. However, no macroscopic bleeding was observed during the procedures. 
Yet, based on the notable observed distinguishing accuracy of THC, we can conclude that 
bleeding is not a negative issue during minimal invasive analysis of liver tissue with DRS. 
The chromophore methemoglobin was only recently added to our analysis algorithm. 
Methemoglobin is a state of hemoglobin that cannot bind oxygen 164. It naturally occurs 
in about 1% of the normal human blood.  Methemoglobin is regularly formed in areas 
with oxidative stress and raised serum levels are linked with the presence of solid  
tumors 166. Taking these characteristics of methemoglobin into account, we recently 
included this chromophore into our analysis algorithm. We observed significantly lower 
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levels of methemoglobin levels within the tumors compared to the surrounding normal 
liver tissue. This is comparable to the results of detected THC. We believe that this can 
be linked to the differences in tissue vascularisation; liver parenchyma is notably higher 
vascularised compared to the tumor lesions, in particular towards the centre of the tumor 
lesion 167. It can therefore be regarded as an important discriminative parameter for 
human liver tissue.

Fat was another significantly discriminating chromophore in our previous ex vivo liver 
analysis 163. The levels were lower in the ex vivo tumor lesions. We hypothesized that 
in vivo the discriminative importance for this chromophore would also be confirmed. 
In the present in vivo analysis, we found significantly higher levels in the tumor lesions. 
Closer histological analysis of the normal liver tissue specimens revealed only 3 of the 
17 included patients to have steatosis levels of any significance (resp. 8%, 30% and 
35% steatosis). The steatosis from the other 14 patients was below 5%, most of which  
0% or 1%. Liver steatosis <5% is traditionally considered as ‘no steatosis’ in the  
literature 159,168.  The low overall levels of steatosis and the low amounts of fat measured 
within the tissue, makes that this parameter is difficult to judge and may greatly differ 
between patients, depending on the degree of steatosis in the liver. Based on these data, 
we believe that the chromophore fat should not be included as an important discriminating 
parameter in future analyses.

For FS measurements, the only tissue parameters that were significantly different 
between normal liver tissue and CRLM were NADH and FAD. This may reflect the low 
specificity for discrimination between normal liver tissue and CRLM realised with FS. 
Certainly the high absorption of hemoglobin may hamper the calculation of intrinsic 
fluorophores between 400 and 600nm.  NADH and FAD are molecules that are both 
involved in the energy metabolism of a cell. Cellular energy in the form of ATP can either 
be generated via oxidative phosphorylation in which FAD is oxidated to FADH2 or via 
aerobic glycolysis in which NAD+ is transformed into NADH. During carcinogenesis, cellular 
metabolism often changes from oxidative phosphorylation to aerobic glycolysis 104,169,170. 
Thus, an increased redox ratio will often be observed in tumor tissue in comparison to 
normal liver cells in vivo. Also our study shows that the liver tumors display a significantly 
increased optical redox ratio. 

Although FS did not add to the overall discriminative accuracy of our analyses, 
several notable fluorescence peaks were observed between 600 and 700nm. Two 
peaks (at 625 and 680 nm) were only observed in tumor tissue, but not in all tumors. 
Peaks at these wavelengths are thought to correspond with porphyrin-like molecules. 
We have previously seen these fluorescent peaks in analysis of ex vivo lung and murine  
tumors 165,171. Porphyrins are organic compounds and are known to form the haem group 
when combined with ferrous iron. Colorectal tumors and CRLM have been shown to 
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accumulate specific porphyrins as a result of a tumor-specific metabolic alteration 147. 
Correlation between porphyrins and necrotic areas within tumor tissue has also been 
observed in a preclinical model 29. The intensity of the signal of both peaks was not 
constant for the various measured spectra in each tumor. We observed areas with high 
and low intensity, which could be due to the variation in necrotic areas. 

We also observed a significant fluorescent peak at 675nm in normal liver tissue 
of several patients, which was not present in any of the tumor tissues. Chlorophyll is 
an exogenous molecule that is known to emit a fluorescent signal at this 675nm. It is 
present in various vegetables and fruit and is known to accumulate within the liver upon 
consumption 172. It could therefore be related to food intake of the patients. The fact that 
the appearance of these three additional fluorescent peaks seems to be defined to either 
tumor or normal liver tissue renders that they could be used as additional discriminative 
factors if present. The value of these results needs to be investigated in future analysis.

Systemic chemotherapy is involved in the current treatment of an increasing number 
of patients with CRLM. There is no clear literature on the (increased) risk of an involved 
resection margin after neo-adjuvant chemotherapy, but we know R1/R2 resections are 
independently associated with early recurrence and decreased disease-free and overall 
survival 173,174. If optical spectroscopy is to be incorporated in surgical tools for CRLM 
resection, it is important to determine if the discriminative accuracy of this technology 
is hampered as a result of neo-adjuvant chemotherapy. The results of our CART analysis 
show that the discrimination of CRLM from normal liver tissue is not affected when 
patients were treated by pre-operative chemotherapy. 

The results of the first in vivo study of liver tissue with DRS and FS towards 
development of new ‘optical surgical tools’ can be considered very promising. Yet, they 
only give proof of principle in a small number of patients. The next step is to confirm and 
validate our results in a larger patient population. Further study of FS will be needed to 
investigate if this technique has added value with DRS towards an application in daily 
liver surgery. Specific interest should be put on the evaluation of the addition fluorescent 
peaks between 600nm and 700nm for this purpose. 

In conclusion, we have demonstrated that DRS can accurately discriminate tumor from 
normal liver tissue. The discriminative accuracy is not hindered by pre-treatment with 
systemic chemotherapy. These results confirm previous findings of an ex vivo analysis. 
Addition of FS does not further enhance discriminative accuracy, but does provide 
additional fluorescent parameters that could prove of added value for distinguishing 
CRLM from normal liver tissue.
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Introduction

Monitoring of the individual tumor response is crucial for optimizing systemic 
treatment in cancer patients, particularly as treatments trend towards individualized 
patient care 175-178. Therapy response assessment is generally performed by anatomical 
imaging using the standardized RECIST (response evaluation criteria in solid tumors) 
criteria based on changes in anatomical tumor size 179. However, standard-of-care 
anatomical imaging modalities, such as CT, are unable to objectively evaluate treatment 
response at the early stages of treatment. In addition, shrinkage of tumors can be minimal 
even when treatment is effective. This phenomenon is most obvious in certain tumor 
types, like sarcomas or gastrointestinal stromal tumors 180, as well as with new targeted 
drugs that lack direct intrinsic cytotoxic activity, such as bevacizumab 181.

A modality that is based on functional contrast rather than on anatomical features 
alone, may improve response monitoring. An example of functional imaging is Positron 
Emission Tomography (PET) using 18F-FDG.  Nowadays, 18F-FDG PET has been used for early 
response monitoring and outcome prediction, although the accuracy is still dependent on 
the tumor type and the treatment used 182-184.

In the last decade, optical sensing, by means of diffuse reflectance spectroscopy (DRS) 
and autofluorescence spectroscopy (AFS), has been used to improve the identification 
of cancerous lesions in various organs 141-146,185-189. Both modalities enable tissue 
characterization by measuring the spectral response after the tissue is illuminated with 
a selected spectral band of light.  Depending on the tissue composition and its structure, 
a specific “optical fingerprint” is acquired. This optical fingerprint represents specific 
quantitative morphological, biochemical, and functional information from the probed 
tissue, making it a promising technique for the detection of chemotherapy-induced 
alterations.

Tromberg’s group investigated the changes in optically measured biomarkers during 
chemotherapy in breast cancer using diffuse optical spectroscopy (DOS) 190-193.  DOS imaging 
using a handheld probe was used to scan the breasts of patients with locally advanced 
breast cancer before, during and after chemotherapy. The results of these studies showed 
that optically derived tissue parameters strongly correlate with and, in some cases, predict 
pathologic response. A study by Falou et al also suggested that responders and non-
responders could be differentiated with DOS 194. Finally, the biomedical engineering group 
at Duke University showed that a combination of DRS and AFS can be applied to monitor 
drug concentrations and tumor physiology in vivo in a preclinical mouse model 195.

Studies thus far, have mainly focused on the non-invasive application of optical 
sensing by hand-held optical transducers used to scan tissue surfaces. This approach has 
a clear advantage for breast tumors, but may limit the applicability of optical sensing 
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for deep seeded tumors such as in the lung or kidney. Recently, we described an optical 
needle probe able to perform optical measurements in tumor tissue 189,196,197. Optical 
measurements conducted through very fine needles (smaller than 27G), open the 
potential to assess treatment response of (solid) tumors at deep tissue sites 198. The aim 
of this study was to investigate whether dual-modality DRS-AFS, incorporated in a small 
needle probe, was able to monitor the dynamics of tumor response after treatment with 
cisplatin, using a preclinical mouse model for BRCA1-mutated breast cancer.
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Materials and Methods

Animal study protocol

In this study, Brca1-/-; p53-/- mammary tumors were generated in a mouse model 
for hereditary breast cancer previously described by Liu et al 199. These tumors have been 
demonstrated to be sensitive to cisplatin at a maximum tolerated dose (MTD) of 6 mg/kg 
administered intravenously 200. 

Small fragments of tumor (1-2 mm in diameter) were orthotopically transplanted into 
the fourth right mammary fat pad of 36 female (FVB/N HanHSD WT) animals (6-8 weeks 
of age) as described previously 200. Starting two weeks after tumor grafting, the onset of 
tumor growth was checked at least three times per week. Tumor size was determined by 
caliper measurements (length and width in millimeters) and tumor volume (in mm3) was 
calculated using the following formula: 0.5 x length x width2.

Once the tumor volume reached 400-800 mm3, the animals were separated into 
control and treatment groups. Animals in the treatment group (N=18) received cisplatin (1 
mg/ml in saline/mannitol) at a dose of 6 mg/kg (MTD) in a single intravenous injection into 
the tail vein. Animals in the control group (N=18) received an equivalent amount of saline.

DRS and AFS tumor measurements were performed in vivo after inserting the 
spectroscopy needle percutaneously (through the skin) into the tumors. Baseline 
measurements were performed on day 0, immediately after treatment/placebo 
administration, and then on days 1, 2, 4 and 7 afterwards.  These time points were selected 
from a previous pilot study. To evaluate whether eventual changes in the optical profile 
were systemic or tumor-specific, 8 animals from each group were randomly chosen for 
additional in vivo measurements in liver and muscle tissue on days 2, 4 and 7.

After each session of optical measurements, 3-5 animals from each group were 
sacrificed to obtain tumor tissue for histopathological evaluation. Tumor samples were 
dissected into three parts: these were snap-frozen in liquid nitrogen, fixed in 4% formalin, 
or fixed in acetic acid-formalin ethanol-saline.

	
The tumor model used is known to be very sensitive to the MTD of Cisplatin, whereas 

non-treated tumors grow rapidly. This could result in control animals being removed 
from the experiment based on humane endpoints (tumor volume >1500 mm3), or in a 
minimal amount of measurable tumor tissue in the treated animals before the end of the 
experiment. Therefore, animals with slightly higher tumor volumes were included in the 
treatment group.  Throughout the course of the experiment, starting three weeks before 
the tumor grafting, the animals were given a purified diet to eliminate autofluorescence 
from chlorophyll 201. During the optical spectroscopy measurements, the animals were 
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deeply anaesthetized using 1.5% isoflurane mixed with oxygen. All animal procedures 
were approved by the Animal Ethics Committee of the Netherlands Cancer Institute.

Optical spectroscopy using a miniaturized optical probe

DRS and AFS measurements were performed using a portable spectroscopic 
system, which consists of two light sources and two spectrometers (Figure 1). For the 
DRS measurements, a Tungsten halogen broadband light source (360-2500 nm) with an 
embedded shutter was used. For AFS the system was equipped with a semiconductor laser 
(λ=377 nm) to induce autofluorescence. One spectrometer was used to resolve light in the 
visible wavelength range, i.e. 400 nm till 1100 nm (Andor Technology, DU420A-BRDD), the 
other to resolve near infrared light from 900 to 1700 nm (Andor Technology, DU492A-1.7). 
The spectrometers were controlled by a custom-made LabView software user-interface 
(National Instruments, Austin, TX) to acquire and save the data. The calibration procedure 
has been described elaborately by Nachabe et al 202. 

A custom fiber-optic needle which can probe tissue at the needle tip was developed. 
The needle consisted of a 21G (0.82mm) outer cannula and a 22G adjustable stylet        
(Figure 1B), containing four identical fibers with a core diameter of 100μm. To minimize 
tissue damage, the optical fibers were retracted during needle insertion. The optical fibers 
were protruded after positioning the needle at the right position to establish optimal 
tissue contact. Two fibers were connected to the broadband light source and laser, while 
the two other fibers were connected to the spectrometers to capture diffusely scattered 
light and fluorescence from the tissue. Two different source-detector separations (SDS) 
were utilized (1.5mm and 0.15mm). The spectra acquired with the 1.5 mm SDS were used 
for the DRS data analyses, whereas the DRS spectra measured with the 0.15 mm SDS were 
used to correct for absorption and scattering in the fluorescence spectra.

	
Figure 1. Schematic overview of the combined DRS and AFS optical setup. The system measures diffuse 
reflectance (400-1600 nm) and intrinsic fluorescence (400-800 nm) of tissue through the use of a 
miniaturized 21G needle with a retractable inner fiber-optic stylet.
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Diffuse Reflectance spectral analysis

Three to five DRS spectra were collected from each animal on each measurement 
day, consecutively. To interpret the acquired DRS spectra, a widely accepted analytical 
model, introduced by Farrell et al 203, was used to estimate the various DRS absorption 
and scattering coefficients. The absorption coefficients represent the concentration of 
physiologically relevant absorbers in the tissue, such as hemoglobin, water and fat, as 
well as functional parameters like tissue oxygenation. The main scattering parameters 
are the reduced scattering coefficient (at 800 nm), the reduced scattering slope of the 
Mie scatterer (Mie scattering slope) and the Mie-to-total scattering fraction. The Mie 
scattering slope is related to the average particle size 204. In the Mie-to-total scattering 
fraction the total scattering of tissue is assumed to be composed of Mie and Rayleigh 
scattering. In tissue, Mie scattering represents scattering caused by biological cells and 
cellular components, whereas Rayleigh scattering is elastic scattering of light by particles, 
which are much smaller than the wavelength of light (e.g. macromolecular aggregates 
such as collagen fibrils). The validation of the DRS analytic method has been described 
previously by our group 202,205. 

Intrinsic fluorescence modeling and quantification

Intrinsic fluorescence from the tissue was calculated by correcting the acquired 
fluorescence spectra for absorption and scattering using the short SDS DRS spectra. 
For the latter, a modified photon migration method 206 was used based on the work by  
Müller et al 207 and Zhang et al 149. The corrected spectra were fitted using the fluorescence 
spectra (excitation at 377 nm) of endogenous tissue fluorophores (collagen, elastin, NADH 
and FAD) as a priori knowledge. The optical oxidation-reduction (redox) ratio, which is 
linked to the metabolic state of the tissue, was defined as NADH/ (NADH+FAD) 169,208. Since 
collagen and elastin have almost identical fluorescence spectra, estimated amounts of 
collagen and elastin were combined as Collagen + elastin.

In case the tissue contained diagnostic levels of endogenous fluorophores other than 
the ones included in the standard fit model, the area underneath the fitted curve (known 
fluorophores) was subtracted from the total area under the original curve (measured 
fluorescence). 

Histopathologic analyses

Samples were stained with both standard hematoxylin & eosin (HE) and Masson’s 
Trichrome dyes. The HE stained sections were used to quantify vital, necrotic and fibrotic 
tissue fractions. The necrotic and fibrotic fractions were calculated as a percentage of the 
overall tissue area across each section. For this purpose at least 10 different fields were 
investigated at a 400x magnification.
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Immunohistochemical analysis of tumors was performed using anti-γH2AX [rabbit 
polyclonal, Cell Signaling, #2577, 1:50 in 1% bovine serum albumin diluted in phosphate 
saline buffer], anti-cleaved caspase-3 [rabbit polyclonal, Cell Signaling, #9661, 1:100 in 1% 
PBSA], and anti-Ki67 probes (Dako; 1:100). For evaluation of the amount of lipids, frozen 
sections were mounted on glass slides and stained with Oil-red. All histopathology was 
evaluated by an experienced pathologist in a blinded study setting. The pathology findings 
were used to cross validate the longitudinal changes in the optical end-points.

Two-photon excitation microscopy 

Intrinsic fluorescence in tumor was imaged using a two-photon confocal microscopy 
setup. These experiments were carried out to relate the differences in fluorescence 
spectra obtained with AFS to specific structures in the tissue slices. Snap frozen tumor 
pieces were sliced in 25μm thick sections, kept unstained and unfixed, and mounted onto 
glass microscope slides. The two-photon excitation source was a Ti:Sapphire laser tuned 
to 790 nm. The excitation light (equivalent to a single-photon excitation wavelength of 
395 nm) was delivered to and the emitted light was collected from the sample through a 
Leica Confocal microscope (with a Leica HCX IRAPO 25x water immersion objective with a 
numerical aperture of 0.95) coupled to a Leica TCS SP5 tandem scan head operating at 500 
lines/sec. A photomultiplier served as the detector. For each tumor sample, fluorescence 
images were obtained in the wavelength ranges of 400-500 nm, 500-600 nm, and 600-
700 nm. This was done to compare the relative intensity of fluorescence at these spectral 
ranges between treated and control animals.

Statistical analysis

To examine the trends in optical parameters over time, a linear regression model 
was performed in MATLAB 7.13 (MathWorks Inc, Natick, MA). The fixed-effects terms in 
the models were treatment (Controls vs. cisplatin), time (day), and their interactions. A 
slope and intercept were fit for the data of both the treated and control group using 
maximum likelihood estimation. For the significance of fixed effects a likelihood ratio test 
was statistically compared to a chi-squared distribution with one degree of freedom (for 
one coefficient being eliminated). For all tests, statistical significance was set at P < .05.
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Results

Longitudinal trends in DRS parameters and tumor volume

DRS parameter quantification was performed as part of the model-based data analysis 
using a total of 712 DRS spectra. The longitudinal changes for the average tumor volume and 
various DRS parameters over time are shown in Figure 2. In the control animals, the tumor 
volume increased during the entire follow-up period, whereas the tumors of the cisplatin-
treated animals started to shrink two days after treatment. For the DRS parameters, the 
trends during follow up were significantly different between the treated and the control 
groups for the Mie scattering slope (P<.0001), Mie-to-total scattering fraction (P<.001), 
Tissue oxygenation (P=.035) and Fat volume fraction (P<.0001).

Longitudinal trends in AFS parameters 

The fluorescence spectra and corresponding model fits for two representative animals 
(one treated and one control animal) on day 0, 2, 4, and 7 are shown in Figure 3. In the 
tumor of the treated animal an increasing deviation between the measurements and the 
fitted curves was observed from day 2 onwards, between 500 nm and 800 nm. This indicates 
that fluorophores other than the ones included in the standard fit model (collagen, elastin, 
NADH, FAD) were measured. This additional fluorescence activity (from now on called 
Fluorescence residual) was seen in all the treated tumors at day 4 and 7. 

The longitudinal kinetics for each model-fitted AFS parameter and the calculated 
Fluorescence residual across all treated animals and control animals are shown in Figure 4. 
The plotted linear trend for the Fluorescence residual in tumor was significantly different 
between the treated and the control groups (P = .018). No significant trends were observed 
for the Total fluorescence intensity, Collagen + elastin and the Optical redox ratio.

Figure 5 shows the longitudinal changes of the Fluorescence residual in tumor, liver, and 
muscle across all animals from both groups. The additional fluorescence is not present in 
muscle and liver tissue, indicating a tumor-specific effect. 

Two-photon confocal microscopy

In an attempt to better understand the origin of the additional autofluorescent emission 
(mainly above 600 nm) seen in the treated animals, two-photon confocal fluorescence 
microscopy images recorded in a spectral range of 600-700 nm were compared with 
adjacent tissue sections that were stained with HE (Figure 6). The samples were collected 
after one week of follow-up, i.e. when the differences seen in AFS signals were maximal. In 
the treated-tumor samples numerous fluorescent foci were present. These foci correlated 
with cellular structures rather than with collagen deposits or necrotic areas. It remains to 
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be determined whether this specific fluorescence originated from stromal or tumor cells. 
For the two-photon images recorded in the spectral range 400-500 nm and 500-600 nm, no 
considerable differences were seen when comparing both groups.

Evaluation of histology and histochemical biomarkers

The evaluation of pathological response of tumors to cisplatin using various histological 
dyes and immunohistochemical biomarkers is illustrated in Figure 7. A strong increase in 
nuclear DNA damage was seen 24 hours after cisplatin administration using γ-H2AX as a 
marker. From day 2 onwards, a significant decrease in the proliferation marker Ki-67 and 
an increase in apoptosis-related cell death (cleaved caspase-3 marker; CC3) were observed. 
Analysis of Masson’s Trichrome (MT) stained slides showed increased amounts of fibrotic 
tissue 4 to 7 days after treatment which corresponded to the HE images. An increase in lipids 
(Oil-red) was seen over time.

In Figure 8A and 8B fractions of vital, necrotic and fibrotic tumor tissue for both groups 
are shown as quantified on the HE stained tissue slides. These data indicate that the 
pathological response to cisplatin in this tumor model corresponds with the replacement of 
viable tumor tissue by fibrosis, without a considerable increase in necrosis. The longitudinal 
changes in these histopathological endpoints were compared against changes in prominent 
optical parameters as shown in Figure 8C and 8D. In the treated group a major shift in both 
histology and optical endpoints was seen, whereas minimal changes were observed across 
all of these parameters in the control group.

Figure 2. Longitudinal changes in tumor volume and DRS parameters measured for both groups across 
time: Tumor volume (A), Mie scattering slope (B), Mie-to-total scattering fraction (C), Total hemoglobin 
(D), Tissue oxygenation (E), Reduced scattering (F), Fat volume fraction (G), and Water volume fraction 
(H). The bars represent the mean for each parameter computed across all available animals, at each 
particular time point, for both the treated (red) and control (blue) groups. The dashed lines represent the 
corresponding regression lines. P values are shown at the top of each plot.
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Figure 3. Auto-fluorescence spectra for a representative animal in the control group and the treated group 
during one week of follow-up. The blue lines are the fluorescence measurements, whereas the red lines 
are the results of the model-based fitting procedure. The green lines illustrate the residual due to the 
presence of additional fluorescence, which is specifically seen in the treated animals after two days.

Figure 4. Longitudinal trends in AFS parameters measured for both groups across time: Total fluorescence 
intensity (A), Collagen + elastin (B), optical redox ratio (C), and Fluorescence residual (D). The bars 
represent the mean for each parameter computed across all available animals, at each particular time 
point, for both the treated (red) and control (blue) groups. The error bars are SE’s. The dashed lines 
represent the corresponding regression lines. P values are shown at the top of each.
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Figure 5. Course of fluorescence residual in tumor (A), liver tissue (B), and muscle tissue (C) over time. The 
data of muscle and liver tissue shown here were obtained from 16 (8 per group) of the animals that were 
sacrificed at day 2, 4 or 7, whereas (A) represents the full cohort. The error bars are SE’s.

Figure 6. Two-photon confocal microscopy images (600-700 nm) of tumor sections of a representative 
control (A) and treated animal (C). Effective excitation was at 395 nm and the intensity scale is the same 
in both of the two-photon images. The samples were collected after one week of follow-up, i.e. when the 
differences seen in AFS signals were maximal. In the treated tumor samples numerous fluorescent foci 
were present within the cells. (B) and (D) show corresponding HE images. 
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Figure 7. Tumor pathological response to a MTD Cisplatin. Scale bar = 100 μm. HE (A) and Masson’s 
Trichrome (MT; B) stained tumor sections showing replacement of viable tumor tissue by fibrosis, 
especially after day 2 onwards. The γ-H2AX (C), Ki-67 (D), and anti-cleaved caspase 3 (CC3; E) markers 
showed a strong increase in DNA-damage, a decrease in proliferation and an increase in apoptosis-related 
cell death, respectively. An increase in the amount of lipids (Oil-red stain) was seen across time. 
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Figure 8. Comparison of histology and optical spectroscopy end points. The upper two figures show the 
temporal changes in mean fractions of vital tumor tissue, necrosis and fibrosis for the control group (A) and 
treated groups (B), as assessed by histological staining using HE. The lower two figures (C) and (D) show 
temporal changes in the Mie scattering slope, the Mie-to-total scattering fraction, and the fluorescence 
residual for both groups. Error bars indicate SE.
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Discussion

In this study, we used a combination of DRS and AFS to investigate cisplatin-induced 
changes in tumor physiology and morphology across a period of one week in a mouse 
model for hereditary breast cancer. The changes in optical endpoints were compared 
against the degree of pathological response. The results showed that various DRS and 
AFS parameters in the treated animals significantly changed throughout the course of 
treatment relative to the untreated animals. These parameters were the Mie scattering 
slope (P<.0001), Mie-to-total scattering fraction (P<.001), Tissue oxygenation (P=.035), 
Fat volume fraction (P<.0001), and Fluorescence residual (p<.018). Furthermore, the 
observed changes appeared to be proportional to the degree of vital tumor tissue and the 
formation of fibrosis. 

Optical scattering characteristics are dependent on the size and density of cell nuclei and 
organelles as well as on the composition of the extracellular matrix (e.g. macromolecular 
aggregates, collagen fibers). In the histopathological evaluation, considerable alterations 
in the extracellular matrix (formation of fibrosis) and in the size and the density of 
(sub) cellular structures were observed in the tumors of the treated animals. These 
morphological and structural changes may lead to changes in tissue scattering properties 
that in turn may translate into changes in the Mie scattering slope and Mie-to-total 
scattering fraction. Although significant fibrosis and cellular disintegration after treatment 
with cisplatin may explain these specific changes, further research is needed to provide a 
better understanding of these relationships.

Tumor tissue oxygenation values of untreated animals remained hypoxic over time, 
whereas tumors of treated animals became progressively more oxygenated. This is 
consistent with previously reported results, where improved oxygenation of tumor tissue 
was observed due to tumor regression and altered metabolism after treatment with 
doxorubicin 195,209,210. For example, Vishwanath et al performed DRS using a surface probe 
and showed that mammary-tumor tissue oxygenation in treated mice increased after 
doxorubicin administration relative to the untreated controls. 

A particularly interesting finding was the additional fluorescence observed in the 
treated group. Based on two-photon imaging, the extra fluorescence was specifically found 
in the cellular components of tumor tissue treated with cisplatin. Fluorescence was tumor 
specific and not observed in liver or muscle tissue of the treated animals. Earlier research 
has shown that some cancers accumulate diagnostic levels of endogenous protoporphyrin 
IX and other metabolic products of porphyrin as a result of tumor-specific metabolic 
alterations 147,211. Quantification of porphyrins using standard fit procedures is challenging, 
since the exact wavelength of the fluorescence bands of porphyrins strongly depend on 
the environment (e.g. pH) where it is measured 147,211. Whether porphyrin fluorescence 
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is primarily associated with certain tumor types or with response to systemic therapy is 
unknown. The exact basis of the additional autofluorescence emission observed in this 
study will be investigated in future studies. 

The AFS spectra were fitted using the intrinsic fluorescence spectra of collagen, elastin, 
NADH and FAD as a priori knowledge. No considerable change over time was observed in 
these parameters. This may be due to the presence of significant amounts of unknown 
fluorescence which was not taken into account in the AFS curve fitting procedure, and 
hence may have influenced quantification of minor effects of the other fluorophores such 
as collagen, elastin, NADH and FAD. 

The use of a broad spectral range in combination with a model-based analysis 
allows proper estimation of most individual DRS parameters. Some caution is advised 
concerning the Total hemoglobin contents within this study. Although a thin 21G 
optical needle (0.72mm) was used, minor bleeding at the tip of the needle may have 
caused high values for average Total hemoglobin content. However, a 14G coaxial 
cannula combined with a fiber-optic needle was successfully used to measure tissue 
optical properties in human breast tissue during surgery in a previous clinical study by  
Brown et al 212. This indicates that small bleedings are not necessarily a problem when 
optical spectroscopy technology is applied in vivo. It also indicates the feasibility, within a 
clinical setting, of monitoring changes in perfusion and blood content of tumors by using 
a needle-based fiber-optic tool. Both parameters may be of specific interest for evaluation 
of tumor responses to anti-angiogenic drugs.

Earlier research suggests that cancer cells show specific alterations in different 
aspects of lipid metabolism. For example, the high proliferation of cancer cells requires 
large amounts of lipids as building blocks for biological membranes 213, whereas apoptosis 
related cell-death is associated with an accumulation of cellular lipids 214. Our setup is able 
to measure in the near infra-red wavelength range up to 1600 nm where fat and water 
absorption bands exist. This enables reliable estimation of these substances 202. In this 
study, histopathological analysis using Oil-red showed an increase in the amount of lipids 
in tumor sections for the treated animals. This is consistent with the increase in apoptosis-
related cell death seen in the anti-cleaved caspase-3 images and the clear increase in 
fat volume fraction (p<.0001) measured with DRS for the same animals. Regarding the 
control group, the high off-set of fat % at day 0 and the decrease in the average fat volume 
fraction during follow up may be explained by the lower average “starting” tumor volume 
in the control animals (as compared to the treated animals), as well as the subsequent 
progressive growth of these tumors and the associated decrease in lipid content.

In the current study we used a tumor model that is known to be very sensitive to the 
MTD of cisplatin. Further studies in animal models with drug resistant tumors are needed 
to explore the differences in optical parameters in these settings. Moreover, it is likely that 
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the changes in tumor tissue vary based on the specific treatment given. To provide a more 
complete understanding of the relationship between optical spectroscopy parameters 
and pathological response, the effect of other drugs on spectroscopy parameters needs 
to be investigated further. 

Conventional anatomical imaging alone lacks the sensitivity for early response 
monitoring or assessing the effect of new targeted therapies, which do not necessarily 
result in a change in tumor size. For these purposes, functional information, such as that 
obtained by 18F-FDG PET 181-183 and contrast-enhanced MRI 215 is more suitable. Optical 
spectroscopy is a relatively new functional imaging technique that may contribute to fast 
response evaluation and timely shifting of systemic treatment. This could be of great clinical 
benefit, even when it requires (minimal) invasive optical spectroscopy measurements in 
the tumor. In a time of personalized medicine, repeated tumor core biopsy is increasingly 
used during the course of treatment to generate a genetic or epigenetic profile allowing 
selection of the best possible treatment. Repeated biopsies may, however, be confounded 
by intra-tumor heterogeneity 216. By performing optical spectroscopy along the needle 
path, an “optical tumor profile” can be recorded covering a relatively large volume of tumor 
tissue. E.g. Nachabe et al 217 showed that optical spectroscopy measurements at the tip 
of a needle allowed real-time tissue characterization during percutaneous interventions. 
As such, optical spectroscopy offers the potential to measure real time alterations in the 
optical profile during systemic treatment. In this way, it may help to personalize cancer 
treatments and may improve cost effectiveness of systemic treatment in cancer.  

In conclusion, this study shows that dual-modality diffuse reflectance – autofluorescence 
spectroscopy provides quantitative functional information that corresponds well with the 
degree of pathologic response of systemic treatment. This could be of considerable value 
for the monitoring and prediction of cancer therapy efficacy based on individual patient 
response. Further studies including resistant tumor models and various therapeutic drugs 
are needed to verify the initial findings of this work.
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Introduction

Liver steatosis is one of the most important risk factors for primary non-function or 
early graft failure after orthotopic liver transplantation (OLT). Liver steatosis ranges from the 
less severe non-alcoholic fatty liver disease (NAFLD) to severe non-alcoholic steatohepatitis 
(NASH) 218. Steatosis is generally characterized quantitatively and qualitatively. Steatosis is 
traditionally quantified as none (<5%), mild (5% to 33%), moderate (33% to 66%), or severe 
(>66%) dependent on the percentage of hepatocytes containing fat vacuoles 160,168,219-221. 
Within the degree of fat accumulation in the hepatocytes, the histological evaluation 
of steatosis can be qualified in two major patterns; microvesicular and macrovesicular 
steatosis. Microvesicular steatosis solely, has been shown to have no negative impact on 
outcome 222-224. Yet, several studies have shown that moderate and severe macrovesicular 
steatosis of liver grafts is associated with impaired graft function after transplantation 225-228.

Assessment of fatty liver grafts during OLT is still a challenge for the transplant team. 
Surgical evaluation of fat accumulation by visual inspection and palpation during organ 
procurement has low predictive values and remains subjective 229. Conventional imaging 
technologies also have their limitations in steatosis analysis and quantification.  Ultrasound 
(US) is widely used in clinical practice to detect fatty infiltration by assessing the echogenicity 
in the liver. Disadvantages of this technique are that is not quantitative, prone to inter-
observer variance and its sensitivity is reduced in morbidly obese patients 162. Computer 
tomography, magnetic resonance imaging, and magnetic resonance spectroscopy are able 
to visualize intrahepatic fat very accurately. The limitations of all three techniques are the 
inability to differentiate between macro- and microvesicular steatosis and the relatively time 
consuming and logistic efforts involved in these methods during a donation procedure 230,231. 
New techniques such as electrical bioimpedance have recently been used to asses hepatic 
steatosis with high reliability 219. Yet, only results in an animal set-up have been displayed.

Invasive histological evaluation still remains the gold standard for assessment of 
steatosis in liver tissue 232.  However, discrepancy in histological analysis has been described 
due to variability in interpreting the histological assessment per biopsy and the inter-
observer variation among expert pathologists 233. 

Over the last decade, diffuse reflectance spectroscopy (DRS) has been suggested 
to be a potential diagnostic tool for objective and quick assessment of tissue lipid  
concentration 95,163,234. During DRS, tissue is illuminated by a selected light spectrum. By 
subsequent analysis of absorption and scattering characteristics, an ‘optical fingerprint’ is 
obtained which represents specific biochemical and morphological information of the tissue 
examined. DRS is consequently able to determine the amount of fat in the tissue that is 
illuminated. The goal of the present study is to investigate whether DRS allows to quantify 
steatosis in human liver tissue in an in vivo as well as in an ex vivo clinical setting.  
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Materials and methods

Clinical study design  

The study was conducted at The Netherlands Cancer Institute - Antoni van Leeuwenhoek 
hospital (NKI-AVL) between October 2009 and December 2012, under approval of the protocol 
and ethics review board. Optical measurements were performed both in vivo and ex vivo. 

For in vivo measurements, 17 patients were included that were scheduled for partial 
liver resection mainly because of metastatic disease. Written informed consent was obtained 
from all patients. Before liver resection was performed, a 15 Gauge optical needle (Figure 1a, 
Invivo, Schwerin, Gemany) was inserted into normal liver tissue within the planned resection 
area (Figure 1B and 1C). Ultrasound guidance (Hitachi Aloka, ProSound SSD-4000) was used 
to confirm the location of the tip of the needle to be in normal liver tissue and at least 2 cm 
from the liver tumor. A total of 242 optical measurements were performed at 49 different 
measurement locations. After the optical measurements, a twist coil marker (OTM 3.0SA, BIP 
GmBh, Türkenfeld, Germany) was inserted to mark the exact measurement location. 

Ex vivo optical measurements were performed in normal liver tissue from 41 patients 
after partial liver resection. These patients included the 17 patients from the previously 
mentioned in vivo analysis combined with 24 additional patients that underwent only ex 
vivo measurements of resected liver tissue. Directly after liver resection DRS measurements 
were performed within benign liver tissue at least 2cm from the metastatic sites. Several 
measurement locations were determined within each tissue specimen and on average 5 
consecutive DRS measurements were performed at each measurement location. A biopsy 
was then directly taken from all specific measurement locations for further histopathological 
analysis. A total of 636 DRS measurements at 127 different measurement locations were 
collected (Figure 1D).  

	
Optical spectroscopy instrumentation 

Recently, Nachabé et al described the instrumentation and calibration procedure of our 
DRS system 23,33,38,95. The DRS system consists of a console comprising a Tungsten/Halogen 
broadband light source and two spectrometers. The two spectrometers resolve light in the 
visible wavelength range between 400 nm and 1100 nm (Andor Technology, DU420A-BRDD) 
and in the near infrared wavelength range from 800 up to 1700 nm (Andor Technology, 
DU492A-1.7), respectively. An optical probe containing four optical fibers is attached to the 
DRS system for optical measurements 165.  One fiber was connected to the light source and 
two fibers were connected to the spectrometers to capture the diffusely scattered light from 
the tissue in this study. The remaining fiber was not used. The average tissue volume that is 
illuminated with the probe is roughly 5 mm3. The acquisition time of each spectrum was on 
average 0.2 seconds. 
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Histo-pathologic analysis		   

A pathologist located the twist markers inserted into the resected liver tissue after 
the in vivo measurements and excised the surrounding liver tissue for tissue analysis. 
These biopsies as well as the biopsies retrieved from the ex vivo measurements were first 
fixed in formalin, then paraffin embedded and processed for standard hematoxylin and 
eosin (H&E) staining. Three experienced pathologists, who were blinded for the outcome 
of the DRS results, individually examined the histological slides and visually determined 
the amount of steatosis within the benign liver tissue. A semi-quantitative assessment of 
steatosis was determined by estimating the percentage of hepatocytes containing lipid 
droplets (both microvesicular and macrovesicular steatosis droplets) in 10 consecutive 
fields (magnification 25x). Macrovesicular steatosis was defined as fat vesicles larger than 
the cell nucleus, often displacing the nucleus. Microvesicular steatosis was defined as fat 
vesicles with similar size or smaller than the liver cell nucleus. The pathologic degree of 
steatosis was estimated with increments of 5% steps. If both steatosis types were evidently 
present with similar percentages, the steatosis was defined as a ‘mixed type’. The mean of 
steatosis quantifications for each tissue specimen determined by the three pathologists 
was used for comparison with the DRS analysis. Each tissue specimen was then divided 
into one of four preselected steatosis groups; ‘none’ 0% to 5% steatosis, ‘mild’ 5% to 33% 
steatosis, ‘moderate’ 33% to 66% steatosis and severe >66% steatosis. Finally, the liver 
tissue was also categorized by macrovesicular, microvesicular or mixed steatosis type. 

A B

DC

Figure 1. Overview of the optical spectroscopy system and optical measurements performed. (A) Optical 
needle with close-up of the tip; (B) Schematic display of an In vivo measurement performed before liver 
resection; L - benign liver tissue; RM - planned resection margin; T - tumor; GB - gallbladder; ON - optical 
needle; (C) In vivo and (D) Ex vivo measurement in ”normal” liver tissue. 
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Spectral data analysis 

The light delivered to the tissue by the illumination fiber is subject to optical absorption 
and scattering before being collected by the detection fiber of the optical probe. Optical 
absorption is determined by the concentration of chromophores in the probed tissue. 
Each chromophore has its own intrinsic optical absorption characteristic, which is a 
function of wavelength. Fat and water are the dominant chromophores in the wavelength 
range between 1100 and 1600 nm 38. Oxygenated and deoxygenated hemoglobin and bile 
are the dominant chromophores in the wavelength range between 500-900 nm 95. The 
total absorption of the tissue as a function of wavelength can be written as the summation 
of the absorption of each chromophore multiplied by their concentrations in the tissue. 	

Optical scattering in tissue is dependent on the cellular structure of the target tissue 
and is sensitive to size and density of cellular and subcellular structures. Optical scattering 
can be described by the reduced scattering coefficient at a certain wavelength. To interpret 
the acquired DRS spectra, a widely accepted analytic model, introduced by Farrell et al 36, 
was used to estimate the various DRS absorption and scattering coefficients. The acquired 
spectra were fitted and analyzed over the wavelength range from 500 to 1600 nm. Spectral 
characteristics analysis was performed with a Matlab software package (MathWorks Inc., 
Natick, MA). Median values for fat, water, oxygenated and deoxygenated hemoglobin, bile 
and the scattering parameters were calculated from the obtained spectra of each optical 
measurement. 

Statistical analysis

The lipid fraction scored by the pathologist was considered to be a two dimensional 
analysis of the same three dimensional volume of liver tissue analyzed with DRS. To be able 
to compare the pathological analysis to the DRS analysis, the pathological lipid fractions 
were recalculated using the principle postulated by Weibel et al 235 and the following 
formula ( ) 2/3

3
4

areavolume LL
π

= . Larea is the lipid fraction from the histological slide of the 
liver tissue scored by the pathologist and Lvolume is the histological volume lipid fraction 
assuming a homogeneous volume distribution of lipid spheres. 

Inter-observer variability between pathologists was determined using a one-way 
single score intraclass correlation (ICC). We used a Spearman’s rank correlation test 
for the correlation between both the DRS ex vivo measurements and the pathologists’ 
quantification of steatosis as well as for the correlation between in vivo and ex vivo 
measurements within the same 17 patients. Analyses were performed using SPSS 
(Statistical Package for the Social Sciences, version 16.0).
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Results

A total of 41 patients (24 male and 17 female) were included in this study. The average 
age of all patients was 64 years (range 38 to 83 years). Patient characteristics as well as the 
histological characterization of the liver tissue are displayed in table 1. 

 Histological characteristics

To be able to assign specific DRS patterns to differences in liver tissue composition, 
detailed histopathological examinations were performed for the tissue areas measured. 
Examples of the steatosis patterns encountered are displayed in figure 2. The generally 
observed pattern of steatosis was a diffuse and relatively homogenously spread of 
clusters of lipid droplets as depicted in figure 2A+B. Within a liver lobule the lipid droplets 
particularly accumulate near the central vein (Figure 2C). Histological analysis determined 
22 patients in the group with less than 5% steatosis (represented as the group ‘none’). 
Twelve of these 22 patients had between 1% and 5% steatosis, the other 10 patients 
had 0% steatosis. Fifteen patients had ‘mild’ steatosis (5% to 33%), four had ‘moderate’ 
steatosis (33% to 66%), and no patients were diagnosed with ‘severe’ steatosis (>66%). 
Differentiation of the steatosis type was performed on the 19 patients diagnosed with ≥ 5% 
steatosis. Most of these patients (N = 12) displayed a mixed pattern of both microvesicular 
and macrovesicular steatosis (figure 2D). Macrovesicular steatosis, with lipid droplets up 
to 80 µm, was observed in 6 of these 19 cases, while microvesicular steatosis was only 
observed in 1 patient. High magnification illustrations of both steatosis subtypes are 
respectively displayed in figures 2E and 2F. Three independent pathologists determined 
the quantification of steatosis for each individual patient. The calculated intraclass 
correlation (ICC) between the pathologists was 0.949, indicating good agreement with 
each other. 

	
DRS steatosis analysis

On average, 15 DRS measurements were performed within each liver specimen. 
Examples of the optical spectra from one patient of each defined group and their 
corresponding histopathological slides are displayed in figure 3. The spectrum in the 
vicinity of 1200 nm is dominated by the absorption of light by lipid cells. A more prominent 
inverse sharp peak in the light spectrum at this wavelength corresponds to a higher fat 
concentration in the tissue and consequently a higher steatosis score was observed. 

Figure 4 shows boxplots of the calculated concentrations of fat, water and bile as 
well as the scattering coefficient from all tissue measurements for each defined steatosis 
group. The amount of fat, as determined by DRS, clearly increases with a higher grade of 
steatosis on histopathology. In addition, with an increasing steatosis score a significant 
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decrease in water and bile concentration is observed together with an increase in 
scattering at 800nm. 

The results of the average concentration of steatosis determined by both DRS and 
histology for each measured liver tissue specimen are displayed in figure 5. A high level of 
agreement is presented with a correlation of 0.854 when comparing the results of both 
quantification methods for each measured tissue specimen.

The comparison of the DRS analysis for each of the 17 patients for which steatosis 
was determined both in vivo and ex vivo is depicted in figure 6. The correlation of 0.925 
indicates little difference in the quantification of liver steatosis by the optical needle 
before and after resection.

	

	

Table 1. Patient and histological characteristics. *Chemotherapy regime for colorectal metastases consisted 
of a combination of Capecitabine and Oxalipatin. 7 patients also were treated with Bevacizumab. 
Mesothelioma was pretreated with Cisplatin and Pemetrexel and mamma carcinoma metastases were 
pretreated with Capecitabine and Lapatinib

N (percentage)

Included patients Total           41 

Male 24 (58.5%)

Female 17 (41.5%)

Indications for resection Colorectal metastases 38 (92.8%)

Mesothelioma 1 (2.4%)

Mamma carcinoma metastases 1 (2.4%)

Hepatocellular carcinoma 1 (2.4%)

Neoadjuvant chemotherapy Yes 22 (53.7%)*

No 19 (46.3%)

Histological steatosis quantification None (0% - 5%) 22 (53.7%)

Mild (6 - 33%) 15 (36.6%)

Moderate (34 - 66%) 4 (9.7%)

Severe (> 67%)             0    

Histological steatosis characterization No steatosis 10 (24.4%)

Microsteatosis 2 (4.9%)

Macrosteatosis 14 (34.1%)

Mixed steatosis 15 (36.6%)
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Figure 2. Examples of steatosis after standard hematoxylin and eosin (H&E) staining. (A, B) Typical example 
of the diffuse pattern of steatosis in liver tissue in one patient specimen; (C) Lipid droplets generally 
accumulate in the zone around the central veins in each liver lobule (D) Normal liver with mixed pattern 
of both macro- and microsteatosis; High magnification of (E) Microsteatosis; and (F) Macrosteatosis.  
Magnifications are added in the bottom right corner of each photo. 
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 Steatosis DRS: 0%

 Steatosis DRS: 30%

 Steatosis DRS: 57%

Steatosis Pathology:  0%

Steatosis Pathology:  27%

Steatosis Pathology:  47%

No Steatosis 

Mild Steatosis 

Moderate Steatosis 

Figure 3. Examples of steatosis of the liver of increasing severity and the corresponding light spectra of the 
tissue generated with DRS. The estimated steatosis percentages for each tissue sample by three specialized 
pathologists and the corresponding DRS spectra are displayed. Specific wavelengths from which the fat 
volume concentration was calculated are indicated between the dashed lines. Magnifications are added 
in the bottom right corner of each photo. 
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A

C D

B

Figure 4. Boxplots of the concentrations of (A) Fat ; (B) Water ; (C) Bile  and (D) the Scattering at 800nm of 
all included patients by steatosis group as defined by histology. 
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Figure 5. Comparison of the steatosis analysis by DRS versus Pathology in 41 patients. Spearman rank 
correlation = 0.854

Figure 6. Comparison of steatosis analysis by DRS per patient for 17 patients in vivo versus ex vivo. 
Spearman rank correlation: 0.925
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Discussion	

Liver steatosis may significantly affect the function and survival rate of donor livers 
after transplantation. This renders identification of moderate and severe steatosis 
of significant clinical relevance.  Invasive histological evaluation remains the gold 
standard for the assessment of steatosis in liver tissue 232. However, limitations in the 
histological assessment have necessitated the search for novel tools capable of accurate 
quantification of fat in liver tissue 233. DRS has the ability to determine the lipid fraction 
within a tissue specimen with high accuracy 23,33,163,236. Our group recently compared the 
accuracy of DRS quantification of liver steatosis in murine livers with analysis by magnetic 
resonance spectroscopy, magic angle spinning - nuclear magnetic resonance, high-
performance thin-layer chromatography and histopathology. A good agreement of the 
estimated lipid fractions was demonstrated between DRS, the various imaging techniques 
and histopathologic analysis 234. The next step towards the introduction of DRS into daily 
clinical practice of liver surgery, such as liver transplantation, is to first explore the accuracy 
quantifying liver steatosis in human liver tissue in vivo.

In this present study we have analyzed liver tissue in comparable conditions to those 
during liver transplantation: in a controlled situation in the operating theater during 
abdominal surgery directly before and after liver tissue resection.  Our results confirmed 
that diffuse reflectance spectroscopy shows good agreement (correlation of 0.854) in fat 
quantification of liver tissue in comparison with the mean histological quantification of 
three independent expert pathologists. We subsequently demonstrated that DRS could 
quantify liver steatosis in vivo and ex vivo with comparable accuracy. The results of this 
preliminary study demonstrate that DRS could have the potential to improve real time 
quantification of steatosis during liver surgery.  

The main advantages of DRS compared to other available imaging techniques as 
well as to histopathology are that the quantification of steatosis can be performed in the 
operating theatre during surgery and it can be performed real time with feedback of the 
estimated lipid fraction within seconds. In contrast, histological analysis requires specific 
staining at the pathology department and will generally take at least 30 minutes before 
reliable conclusions can be drawn. This is an important feature considering that the time 
factor is critical in all transplantation surgery.  

In addition, incorporation of DRS into a needle as shown in this study allows a single 
point measurement of several mm3 at the tip of the optical needle. This could arguably 
be assumed a disadvantage considering the aim to determine the steatosis level in 
the whole liver. Yet, performing continuous measurements with direct feedback of the 
tissue parameters during the insertion of the optical needle into the target tissue allows 
direct characterization of tissue all along the whole needle path. When we take the most 
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common diffusely clustered pattern of liver steatosis (Figure 2A) into account, multiple 
DRS measurements along the needle tract could arguably provide a good representation 
of the average steatosis fraction throughout a larger area of the liver specimen compared 
to standard histological analysis of a single core biopsy. A notable observation in the liver 
specimens of the patients included in this study was that there was little variation of the 
steatosis concentration determined with DRS between different locations within each 
individual patient. The individual standard variation of the fat fraction varied from 1.0% 
and 13.0% steatosis. 

The main disadvantage regarding DRS in this particular study is that it concerns an 
invasive technique. During the invasive measurements in vivo we did not observe any 
bleeding complications of the examined liver tissue. Microscopic analysis of the examined 
tissue specimen did not reveal obvious tissue damage of local bleeding caused by the 
optical needle. Moreover, an improved version of our optical needle has recently been 
developed for clinical study, now 20G (= 0.8 mm) instead of 15G 237. These arguments 
render our DRS a less invasive technique when comparing it to the generally performed 
core biopsy for histopathology analysis, the current gold standard. 

Our results displayed in figure 5 show that liver specimens with histologically small 
percentages of steatosis appear to have higher percentages of steatosis detected with the 
DRS system. Percent differences up to 20% were observed between the analysis methods. 
The staining method we used was a standard H&E staining. Levene et al 238 demonstrated 
that this staining method could cause an underestimation of the quantification of steatosis 
by expert pathologists when the lipid droplets are mainly microvesicular, as shown by an 
alternative staining method with Oil Red-O on frozen liver samples. However, this method 
is not routinely used in clinical practice. The discrepancies in steatosis concentrations in our 
study could be caused by an underestimation of the hepatic steatosis by the pathologists 
due to the standard staining method used. The clinical consequences of this discrepancy, 
however, are limited as it is well known that minimal degree of steatosis has no impact on 
outcome after liver transplantation 225-228. The good ICC between the three pathologists is 
notable when compared to previous studies. We believe that this high correlation is due 
to the fact that more than half (N = 22) of the included patients were assigned to the ‘no’ 
steatosis group. Thus resulting in a relatively low variation in steatosis concentration over 
the entire cohort. 

Within the steatosis groups as defined by histology, important differences were 
displayed in concentrations of water and bile (Figure 4). Both tissue parameters 
significantly decreased with an increase of lipid deposit in the hepatic tissue. The decrease 
in water concentration with increased steatosis is in line with observations made by  
Marsman et al 239 in murine studies. In a subsequent study, the same group confirmed 
these results, hypothesizing the decrease of water concentration to be a result of 
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exudation from the liver tissue 240. The decrease of bile within the liver tissue could be 
caused by decreased hepatic uptake of serum bilirubin due the lipid deposits within the 
hepatocytes. This hypothesis is supported by several groups who have reported increased 
serum bilirubin levels in patients with moderate and severe hepatic steatosis 159,241.  

The predominance of macrovesicular and mixed steatosis in our patient cohort 
is comparable to previously published papers 128,160,242. Poor graft outcome which is 
commonly associated with macrovesicular steatosis has proven the clinical relevance 
to determine steatosis subtype 225-228. Because of the minimal number of patients with 
microvesicular steatosis an analysis to distinguish both steatosis subtypes by DRS within 
our patient cohort was not possible. Due to this limitation in our study we could not 
draw any conclusions towards a possible applicability of DRS distinguishing micro- and 
macrovesicular steatosis. 

In future studies with more tissue specimens, we aim to determine if DRS can 
qualify both steatosis subtypes based on the described scattering properties of DRS. We 
hypothesize that discrimination of microvesicular from macrovesicular steatosis could be 
made using DRS based on differences in the scattering of light. Optical scattering depends 
on the size and distribution of cellular particles compared to the wavelength of light [36]. 
Notable differences in the scattering of light at 800nm between the defined steatosis 
groups were apparent as displayed in figure 4. Graaff et al 243 demonstrated that the 
wavelength dependence of the scattering parameters depends on the size of the scattering 
particles. Since microvesicular and macrovesicular steatosis droplets significantly differ in 
size, careful analysis of the wavelength dependence of the scattering parameters might 
allow discrimination between the two types of steatosis.  

Conclusion

In a preliminary study, we have demonstrated that DRS can quantify steatosis in liver 
tissue both in vivo and ex vivo with good agreement when compared to histopathology 
analysis, the current gold standard. DRS analyses of liver steatosis can be performed 
within seconds and could therefore be used for a rapid clinical assessment of the liver 
tissue during liver donation and prior to transplantation. Future studies will focus on the 
question of whether DRS can also distinguish between microvesicular and macrovesicular 
steatosis in real-time and to explore effects on transplantation of a liver organ.
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Many years of basic research with optical spectroscopy have demonstrated its 
potential to be translated into every-day medical practice and to enhance to clinical 
decision-making.  The preceding chapters demonstrate our scientific achievements 
towards the applicability of diffuse reflectance and fluorescence spectroscopy for tissue 
differentiation during medical interventions. 

In the preclinical phase, we developed and validated an optical spectroscopy system 
based on the knowledge of previous publications in the optical spectroscopy field. 
Innovative features compared to preceding work by other groups were incorporated into 
our spectroscopy system. The spectroscopic analysis range was extended into the near-
infrared light spectrum up to 1600nm. We could now quantify ‘new’ tissue chromophores 
water, lipid and collagen and include this information into the spectral analysis algorithm. 
We enlarged the distance between the optical needle fibers. This rendered our optical 
system more sensitive to subtle changes in chromophore concentration. Finally, intensive 
research was put into the development and optimization of the analysis software and 
miniaturized optical needles 23,26,33,38,95,234. With these new features, we aimed to take a 
significant step towards introducing optical spectroscopy into daily clinical practice via 
feasibility studies first ex vivo and later in vivo human.	

Ex vivo spectroscopy analyses (Chapters 4-7)

The primary focus for our research was on malignancies of lung, liver and breast 
tissue. In an ex vivo analysis of these tissues, we first explored the discriminating accuracy 
of DRS between normal and malignant tissue. The performance of a combination of DRS 
and FS was then compared to DRS alone in human lung tissue. Secondary focus was on 
advanced development and refinement of our data analysis algorithm, measurement 
procedure and equipment design towards actual clinical deployment. 

We can draw several general conclusions from the results of the four ex vivo 
studies. The two most important observations were: (1) the high overall accuracy of DRS 
discriminating tumor from normal tissue we derived and (2) the rapid spectral feedback 
obtained from each measurement that was within seconds rendering real-time analysis 
possible. The overall accuracy varied from 81% in the primary lung tissue analysis to 
94% in liver tissue analysis. The sensitivities and specificities for the ex vivo studies are 
displayed in table 1. These figures can be considered high when compared to previous 
studies involving DRS on human tissue (see chapter 3). Although it is difficult to put these 
results into perspective due to dissimilarities in both study design and data analysis, our 
results were considered very encouraging and reason for us to continue towards clinical 
applications via in vivo human studies.
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Tabel 1. Sensitivity (Sens) and Specificity (Spec) for DRS and FS in our four ex vivo studies.

DRS FS

Sens Spec Sens Spec

Lung DRS
Chapter 4

89% & 78% 79% & 86% * *

Liver
Chapter 5

94% 94% * *

Mamma
Chapter 6

90% 88% * *

Lung DRS+FS
Chapter 7

98% 86% 90% 75%

	
Two analysis methods were used to examine the derived data. In the first lung study 

(Chapter 4) we performed an empiric and a model-based approach. The results of the 
model-based approach were slightly superior to the empiric analysis. These results 
concurred with the conclusions drawn by our group in a preceding paper on breast tissue 
examination with DRS38. An additional advantage of the model-based approach is that 
it yields information of chromophore concentration, which can be also compared to 
histology analysis. These results induced the decision to solely use and further optimize 
our model-based algorithm in subsequent studies. 

We achieved notable DRS improvements of the overall accuracy of the second 
lung tissue study (Chapter 7). The improved algorithm is believed to be one of the 
explanations. The other is arguably the more standardized approach performing optical 
measurements in normal lung parenchyma. In the first ex vivo lung study normal lung 
tissue was randomly chosen and included. The spectroscopic results of this tissue showed 
significant variation that corresponded to large differences in tissue histology. The DRS 
spectrum in macroscopic pink lung tissue that corresponded with non-collapsed alveoli 
still being filled with air was significantly different from the DRS spectrum in macroscopic 
dark purple colored lung tissue that corresponded with collapsed alveoli. Additionally, air-
filled lung parenchyma is arguably more comparable to the in vivo situation. We therefore 
only performed measurements in normal lung parenchyma with a pink appearance in the 
second ex vivo lung study. 

Applying fluorescence spectroscopy for lung tumor detection did not significantly 
enhance the discrimination capacity compared to DRS spectroscopy alone. The 
fluorescence spectroscopy measurements were performed in the visual light spectrum 
between 400 and 750 nm. Hemoglobin absorbs light wavelengths mainly between 500 
and 650 nm. Blood residue in the alveoli in front of the optical needle tip can absorb part 
of the fluorescent light signal restricting the collection of data for the fluorescent spectral 
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analysis. This is the main reason for the limited added value to the overall discriminative 
accuracy of DRS and FS combined. 

The main similarity of all previous published data on spectroscopy analyses in 
human tissue is the analysis process on cohort data from all included patients. Significant 
variation of tissue between different individuals when studied at cellular level is notable. 
This becomes more prominent when studying inhomogeneous human tissues such as 
breast tissue as we displayed in chapter 6.  Intratumoral heterogeneity has also been 
shown in recent studies 244,245,246. We believe that inter-patient variation will reflect on an 
increased variance of the concentrations of measureable optical chromophores in the 
tissues.  As a result, the accuracy of discrimination between different tissue types can be 
impeded when optical spectroscopy analysis is performed on a cohort data basis. One 
solution to counter this phenomenon would be to create a database of the normal values 
of each tissue chromophore within an enormous cohort of people. However, at this stage 
this is a very time-consuming effort for a technology that still has to proof its possible 
role in modern medicine. We therefore opted for a different approach by studying and 
developing an analysis approach on derived data within individual patients. We revealed 
substantial limited variation in chromophore concentration within patients compared to 
cohort data analysis. We therefore focused on a method of gathering and using spectral 
information of normal tissue to subsequently detect and identify the spectral changes in 
malignant tissue. These results reflected in the superior discrimination accuracy of our 
individual data analysis approach compared to the cohort analysis method as displayed in 
chapters 5-7 for liver, breast and lung malignancies, respectively. 

The general observations of differences in chromophore concentration and scattering 
coefficient determined in tumor tissue compared to normal tissue of the lung, liver and 
breast are displayed in table 2.  No comparisons of our results could be made with previous 
publications on liver and lung in the spectroscopy field, due to a lack of comparable 
studies. Our conclusions in breast tissue are similar to those in previous studies.  
Brown et al 60 and Volynskaya et al 69 demonstrated increased total hemoglobin 
concentrations in breast cancer. Zhu et al 71 and Keller et al 72 both found higher collagen 
levels in breast malignancies. Zhu et al 59 also observed an increased scattering coefficient 
in breast cancers compared to normal breast tissue. In a recent overview, Bydlon et al 247 
displayed the current knowledge on all tissue chromophores.

Tissue saturation was also determined in all ex vivo studies. We disregarded the 
results from the ex vivo analysis because it is unclear what the value of this parameter 
was in non-perfused human tissue. Tissue hypoxia has been demonstrated to be an 
important tissue factor in tumor tissue biology 102,166,248. Hence, we do believe that this  
tissue parameter can be of importance in future in vivo studies of the optical spectroscopy 
in the oncological field.
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A final observation of the histology of the measured tissue specimen in all ex vivo 
studies is that there was no obvious tissue damage caused by the optical needle. This was 
considered an important conclusion for the advancement towards in vivo spectroscopy 
analyses.

In conclusion, from our results of the four ex vivo studies, we argued that our optical 
spectroscopy system could detect the difference between normal tissue and malignant 
tissue within an individual patient in an ex vivo analysis with high accuracy. The next step 
towards clinical applications of these optical spectroscopy techniques was to explore their 
consistency in in vivo analyses.

Table 2. General differences in chromophore concentration and scattering coefficient in tumor compared 
to normal tissue. The arrows indicate a decrease (↓) or an increase (↑) of the measured chromophore in 
malignant tissue compared to the levels in normal tissue. 

Lung DRS
Chapter 4

Liver
Chapter 5

Mamma
Chapter 6

Lung DRS+FS
Chapter 7

Total hemoglobin ↓ ↓ ↑ ↓

Fat ↓ ↓

Collagen ↑ ↑

Scattering ↓ ↓ ↑ ↓

Water ↑ ↑

Bile ↓

	

In vivo spectroscopy analyses (Chapters 8-10)

We first developed a custom-made optical console for in vivo human studies.  A CE 
marked 15G optical needle was then developed by Invivo (Schwerin, Germany). For the 
murine studies, we developed a 21G fiber-optic needle. 

The main objective of the in vivo human studies was to explore the accuracy of 
DRS and FS between normal and malignant tissue in viable liver tissue (Chapter 8).  
Other objectives towards specific clinical applications focused on the ability to monitor 
chemotherapy response (Chapter 9) and the ability to quantify liver steatosis (Chapter 10)

	
Human liver in vivo analysis (chapter 8) 

We displayed a comparable accuracy for the discrimination of colorectal liver 
metastases from normal liver parenchyma in vivo when compared to our previous ex vivo 
DRS results. The in vivo sensitivity and specificity were 95% and 92%, respectively (both 
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94% in ex vivo analysis, Chapter 5). The main discriminative liver tissue chromophores 
were total hemoglobin content, methemoglobin and bile. In FS, the only significant tissue 
parameter was the Optical redox ratio. The addition of FS to the optical system did not 
enhance the discriminative accuracy. In addition, we visualized specific protoporphyrin-
like peaks in the fluorescence spectra within the examined tissues. Increased intensity of 
these peaks was shown in colorectal metastases compared to normal liver parenchyma 
suggesting higher concentrations of these fluorescent molecules in malignant tissue. 
Finally, we showed that preoperative treatment with chemotherapy did not influence the 
discriminative accuracy of our spectroscopy system. This remained above the 90% for all 
patients, with or without systemic pretreatment.   

If DRS and FS could be incorporated into a biopsy needle, these techniques could in 
theory aid the physician to perform a targeted biopsy. In a time of personalized medicine, 
this could reduce the need for repeated biopsy for tumor diagnosis and genetic profiling 
due to indeterminate histology analysis. The optical screening area of our spectroscopy 
needle is only several mm3. However, in theory the direct feedback during introduction of 
an optical needle provides an optical tissue profile of a relatively large tissue volume along 
the needle track. This could be an interesting feature for real-time tissue characterization 
at the tip of a needle during percutaneous interventions with needle guidance by an 
imaging modality like ultrasound, X-ray or MRI.  

It must be noted that our in vivo liver tissue analysis was only performed on liver 
metastases, no primary liver tumor. We demonstrated that bile is an important tissue 
parameter for metastases differentiation from normal liver tissue. Discrimination of 
primary liver disease (e.g. hepatocellular carcinoma) can in theory be more difficult using 
DRS due to the expected diminished differences of bile concentration and the less abrupt 
marginal differences compared to colorectal liver metastases. Future studies will be 
needed to focus on this hypothesis. 

Murine chemotherapy response monitoring (Chapter 9)

Palmer et al previously demonstrated the ability of DRS and FS to monitor tumor 
metabolism in an in vivo mouse model 18. We explored the possibility of DRS and FS to 
monitor chemotherapy response in a comparable model using systemic Cisplatinum. Our 
results demonstrated that the quantitative functional information provided by DRS and FS 
corresponded well to the degree of measurable pathologic response based on the levels 
of vital tumor and tissue fibrosis. Histology is still considered the gold standard for therapy 
response.  Several tissue parameters were significant different in treated and non-treated 
tumors; Mie scattering slope, Mie-to-total scattering fraction, Tissue oxygenation, Fat 
volume fraction and Fluorescence residual. Cisplatinum treatment resulted in an increased 
tissue oxygenation in the treated tumors, whereas the untreated tumors remained more 
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hypoxic. This is consistent with results of tumor metabolism in previous studies with or 
without systemic chemotherapy treatment 19,41,111,166. We found increased intracellular 
levels of fluorescence emission in the cisplatinum treated mammary tumors between 600 
and 700nm. We suggest that increased levels of porphyrins-like molecules in the tumor 
cells could cause these spectral changes 147,249. Yet, we did not detect increased levels 
of tumor necrosis within the cisplatinum treated tumors in accordance with our other 
studies. The exact metabolic cause of these fluorescence peaks remains to be explored. 

Current response monitoring is mainly performed using functional, non-invasive 
techniques such as fMRI, PET-CT and SPECT 5. These imaging techniques still lack the 
sensitivity to detect therapy response in the first weeks after commencing systemic 
treatment. 

The results of this murine study suggest that DRS and FS can display tissue alterations 
due to chemotherapy as soon as the histological response can be noted. These results 
arguably enhance the hypothesis that spectroscopy could be a valid tool for monitoring 
and prediction of cancer therapy efficacy in the near future. Our next step towards this 
goal would be to investigate the optical profile of chemotherapy resistant tumor models 
as well as the effects of various chemotherapeutic drugs on the results of optical sensing 
with DRS and FS.

Liver steatosis analysis (Chapter 10)

In chapter 5, we demonstrated the ability of the DRS system to calculate liver fat 
concentration or steatosis with high accuracy ex vivo. Liver steatosis is becoming 
more common in modern age with the increasing prevalence of diabetes mellitus 232. 
Some chemotherapy regimens have also shown increased levels of liver fibrosis and  
steatosis 126,250. Histology is still considered the gold standard for steatosis quantification 238. 
From all conventional imaging techniques, MRI is the best technique for steatosis analysis 
but has its limitations. Most importantly, it cannot be used in the operating theater 251. 
Steatosis can have serious detrimental effects on patients after major liver surgery, such as 
liver resection and orthotopic liver transplantation 252,253. We therefore explored a possible 
clinical role of DRS for liver steatosis analysis in vivo during operations. 

We displayed a high accuracy quantifying liver steatosis in vivo. The quantification 
results could also be displayed in real-time and in different parts of the liver along the 
needle path, which makes this technique interesting for clinical applications such as 
the selection of donor livers for transplantation. The main objective for future analyses 
will focus on the differentiation of the two main types of liver steatosis; macro- and 
microsteatosis. 

In conclusion, we argue that the results of our pre-clinical and clinical feasibility 
evaluation of tissue discrimination with optical spectroscopy can be considered very 
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promising. We have shown that the spectroscopy console with optical needles and 
analysis software we developed can differentiate normal from tumorous tissue with high 
accuracies, can calculate liver steatosis with comparable accuracy to a pathologist and can 
detect tissue alterations soon after chemotherapy treatment. 

Future focus and investigation

The next step towards clinical application of DRS and FS into daily medical practice is 
to explore the benefits of their incorporation into existing medical devices and the clinical 
workflow. We believe that an individualized approach to tissue sensing with optical 
spectroscopy is the key step towards clinical application of this technology. We also believe 
that optical spectroscopy is a technology that will aid the physician in daily practice, not by 
replacing but by enhancing existing technical modalities. Take for example the increasing 
use of hybrid operating theaters in which standard use of imaging technologies such as 
CT and ultrasound will be available. These techniques assist the physician in pinpointing 
the target tissue macroscopically. Based on the results revealed in this dissertation, we 
believe optical spectroscopy could subsequently be used for further microscopic analysis 
of the target tissue such as margin analysis and tissue characterization at the tip of the 
interventional device.

Applications in several medical fields are currently being considered. In Surgery, optical 
spectroscopy could contribute as an additional tissue-sensing tool in laparoscopy where tactile 
information of target tissue is not possible. The local tissue characterization options of this 
technique, such as liver steatosis quantification, could aid surgeons in peroperative decisions 
regarding extent of organ resection and possibility of organ selection for transplantation. 
DRS can accurately detect malignant tissue in several human organs; accurate tissue margin 
analysis after malignant resection for possible residual disease would be of high clinical 
relevance. A focus should be put towards development of a multi-channel optical spectral 
device to allow rapid analysis of larger tissue surface areas.

In Interventional Radiology, important steps are currently being made towards the 
development of an optical biopsy device. This could improve the first attempt accuracy of 
tissue biopsy procedures by rendering tissue-sensing options at the tip of the biopsy needle. 
Minimal invasive therapeutic interventions such as radio-frequent ablation could also 
benefit from the inter-procedural presence of DRS and FS. Current options for direct ablation 
monitoring are lacking. This inferior monitoring may contribute to local disease recurrence 
after radiofrequency ablation. FS has been shown to be able to predict the margin of the 
ablation zone 94,96. Our group is currently exploring this clinical question. 

In Anesthesiology, the use of optical spectroscopy is being explored for enhanced nerve 
detection in minimal invasive nerve blocking procedures. The first results of these studies 
were recently published 254,255.
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General discussion and future prospective

Finally, an increased interest by several groups is notable towards the use of optical 
spectroscopy for monitoring of systemic therapy response in the Medical Oncology 
field. The possibility of targeted biopsies for tumor profiling enhances the possible role 
spectroscopy could have in this medical field. 
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